44,090 research outputs found

    Person Search with Natural Language Description

    Full text link
    Searching persons in large-scale image databases with the query of natural language description has important applications in video surveillance. Existing methods mainly focused on searching persons with image-based or attribute-based queries, which have major limitations for a practical usage. In this paper, we study the problem of person search with natural language description. Given the textual description of a person, the algorithm of the person search is required to rank all the samples in the person database then retrieve the most relevant sample corresponding to the queried description. Since there is no person dataset or benchmark with textual description available, we collect a large-scale person description dataset with detailed natural language annotations and person samples from various sources, termed as CUHK Person Description Dataset (CUHK-PEDES). A wide range of possible models and baselines have been evaluated and compared on the person search benchmark. An Recurrent Neural Network with Gated Neural Attention mechanism (GNA-RNN) is proposed to establish the state-of-the art performance on person search

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning

    Transductive Multi-label Zero-shot Learning

    Get PDF
    Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label case, in contrast to the growing popularity and importance of more realistic multi-label data. In this paper, for the first time, we investigate and formalise a general framework for multi-label zero-shot learning, addressing the unique challenge therein: how to exploit multi-label correlation at test time with no training data for those classes? In particular, we propose (1) a multi-output deep regression model to project an image into a semantic word space, which explicitly exploits the correlations in the intermediate semantic layer of word vectors; (2) a novel zero-shot learning algorithm for multi-label data that exploits the unique compositionality property of semantic word vector representations; and (3) a transductive learning strategy to enable the regression model learned from seen classes to generalise well to unseen classes. Our zero-shot learning experiments on a number of standard multi-label datasets demonstrate that our method outperforms a variety of baselines.Comment: 12 pages, 6 figures, Accepted to BMVC 2014 (oral

    Distinctive-attribute Extraction for Image Captioning

    Full text link
    Image captioning, an open research issue, has been evolved with the progress of deep neural networks. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are employed to compute image features and generate natural language descriptions in the research. In previous works, a caption involving semantic description can be generated by applying additional information into the RNNs. In this approach, we propose a distinctive-attribute extraction (DaE) which explicitly encourages significant meanings to generate an accurate caption describing the overall meaning of the image with their unique situation. Specifically, the captions of training images are analyzed by term frequency-inverse document frequency (TF-IDF), and the analyzed semantic information is trained to extract distinctive-attributes for inferring captions. The proposed scheme is evaluated on a challenge data, and it improves an objective performance while describing images in more detail.Comment: 14 main pages, 4 supplementary page
    corecore