4 research outputs found

    Simulation based Evaluation of Attribute Aware Scheduling in Heterogeneous Wireless Sensor Networks

    Get PDF
    In many applications of sensor networks, it is required to sense multiple physical parameters of the same region. So multiple different types of sensors are deployed. Such networks are known as heterogeneous networks. In tree based heterogeneous networks, complete aggregation is not possible at every node. The reason is that parent and child node may be of different types. The term Attribute is used to refer to type of packet. When objective is to maximize aggregation, parent selection should be done such that packet sent by given node should be aggregated as soon as possible in its path towards the sink. This approach would result in reduction in schedule length of the tree. Such an algorithm is known as Attribute Aware Scheduling Algorithm. In this work, one such algorithm is evaluated through simulations. It is found that Attribute Aware Scheduling results in better aggregation, smaller schedule length, and reduction in energy consumption. The reduction in schedule length means smaller latency and reduction in energy consumption means extended network lifetime

    Maximizing Network Lifetime using Fuzzy Based Secure Data Aggregation Protocol (FSDAP) in a Wireless Sensor Networks

    Get PDF
    Secure Data Aggregation in Wireless Senor Networks (WSNs) is a challenging issue. The various protocols has been suggested in the recent past such as EDIT[13], ADA[8], TSDA[9], SEDAN[10]. These protocols effectively meet the constraints of WSNs. In this paper, we have proposed a Fuzzy Based Secure Data Aggregation protocol (FSDAP) which is an efficient localized protocol. The FSDAP protocol is designed with three phases. The first phase selects Aggregator Node using ANS algorithm. An ANS algorithm involves two steps to elect an Aggregator Node in the clustered network. In first step, the cluster head is selected based on the Euclidean distance and in second step, the cluster head is selected based on the fuzzy product and fuzzy value (α). Then, in second phase, a selected AN eliminates data redundancy sensed by all sensor nodes within the cluster. Finally, in third phase, the FSDAP protocol effectively detects malicious node and provides secure data transmission path. Thus, the proposed protocol, FSDAP utilizes the node’s resource parameter uniformly, which in turn improves Network Lifetime, maximizes Throughput Rate, maximizes Packet Delivery Ratio and minimizes End-to-End Delay. The FSDAP is simulated using the NS2 simulator and compared with centroid algorithms Fuzzy C-Means and K-Means algorithm and a secure aggregation protocol implemented using SAR (Secure Aware Ad hoc Routing). The time complexity of FSDAP protocol is O(m2n)
    corecore