23 research outputs found

    Semi-Adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images

    Full text link
    In this paper, we design and evaluate a convolutional autoencoder that perturbs an input face image to impart privacy to a subject. Specifically, the proposed autoencoder transforms an input face image such that the transformed image can be successfully used for face recognition but not for gender classification. In order to train this autoencoder, we propose a novel training scheme, referred to as semi-adversarial training in this work. The training is facilitated by attaching a semi-adversarial module consisting of a pseudo gender classifier and a pseudo face matcher to the autoencoder. The objective function utilized for training this network has three terms: one to ensure that the perturbed image is a realistic face image; another to ensure that the gender attributes of the face are confounded; and a third to ensure that biometric recognition performance due to the perturbed image is not impacted. Extensive experiments confirm the efficacy of the proposed architecture in extending gender privacy to face images

    VGAN-Based Image Representation Learning for Privacy-Preserving Facial Expression Recognition

    Full text link
    Reliable facial expression recognition plays a critical role in human-machine interactions. However, most of the facial expression analysis methodologies proposed to date pay little or no attention to the protection of a user's privacy. In this paper, we propose a Privacy-Preserving Representation-Learning Variational Generative Adversarial Network (PPRL-VGAN) to learn an image representation that is explicitly disentangled from the identity information. At the same time, this representation is discriminative from the standpoint of facial expression recognition and generative as it allows expression-equivalent face image synthesis. We evaluate the proposed model on two public datasets under various threat scenarios. Quantitative and qualitative results demonstrate that our approach strikes a balance between the preservation of privacy and data utility. We further demonstrate that our model can be effectively applied to other tasks such as expression morphing and image completion

    DeepPrivacy: A Generative Adversarial Network for Face Anonymization

    Full text link
    We propose a novel architecture which is able to automatically anonymize faces in images while retaining the original data distribution. We ensure total anonymization of all faces in an image by generating images exclusively on privacy-safe information. Our model is based on a conditional generative adversarial network, generating images considering the original pose and image background. The conditional information enables us to generate highly realistic faces with a seamless transition between the generated face and the existing background. Furthermore, we introduce a diverse dataset of human faces, including unconventional poses, occluded faces, and a vast variability in backgrounds. Finally, we present experimental results reflecting the capability of our model to anonymize images while preserving the data distribution, making the data suitable for further training of deep learning models. As far as we know, no other solution has been proposed that guarantees the anonymization of faces while generating realistic images.Comment: Accepted to ISVC 201
    corecore