2 research outputs found

    Recommender systems: a novel approach based on singular value decomposition

    Get PDF
    Due to modern information and communication technologies (ICT), it is increasingly easier to exchange data and have new services available through the internet. However, the amount of data and services available increases the difficulty of finding what one needs. In this context, recommender systems represent the most promising solutions to overcome the problem of the so-called information overload, analyzing users' needs and preferences. Recommender systems (RS) are applied in different sectors with the same goal: to help people make choices based on an analysis of their behavior or users' similar characteristics or interests. This work presents a different approach for predicting ratings within the model-based collaborative filtering, which exploits singular value factorization. In particular, rating forecasts were generated through the characteristics related to users and items without the support of available ratings. The proposed method is evaluated through the MovieLens100K dataset performing an accuracy of 0.766 and 0.951 in terms of mean absolute error and root-mean-square error

    FolkRank++: An optimization of folkrank tag recommendation algorithm integrating user and item information

    Full text link
    The graph-based tag recommendation algorithm FolkRank can effectively utilize the relationships between three entities, namely users, items and tags, and achieve better tag recommendation performance. However, FolkRank does not consider the internal relationships of user-user, item-item and tag-tag. This leads to the failure of FolkRank to effectively map the tagging behavior which contains user neighbors and item neighbors to a tripartite graph. For item-item relationships, we can dig out items that are very similar to the target item, even though the target item may not have a strong connection to these similar items in the user-item-tag graph of FolkRank. Hence this paper proposes an improved FolkRank algorithm named FolkRank++, which fully considers the user-user and item-item internal relationships in tag recommendation by adding the correlation information between users or items. Based on the traditional FolkRank algorithm, an initial weight is also given to target user and target item's neighbors to supply the user-user and item-item relationships. The above work is mainly completed from two aspects: (1) Finding items similar to target item according to the attribute information, and obtaining similar users of the target user according to the history behavior of the user tagging items. (2) Calculating the weighted degree of items and users to evaluate their importance, then assigning initial weights to similar items and users. Experimental results show that this method has better recommendation performance
    corecore