2,887 research outputs found

    Planning natural repointing manoeuvres for nano-spacecraft

    Get PDF
    In this paper the natural dynamics of a rigid body are exploited to plan attitude manoeuvres for a small spacecraft. By utilising the analytical solutions of the angular velocities and making use of Lax pair integration, the time evolution of the attitude of the spacecraft in a convenient quaternion form is derived. This enables repointing manoeuvres to be generated by optimising the free parameters of the analytical expressions, the initial angular velocities of the spacecraft, to match prescribed boundary conditions on the final attitude of the spacecraft. This produces reference motions which can be tracked using a simple proportional-derivative controller. The natural motions are compared in simulation to a conventional quaternion feedback controller and found to require lower accumulated torque. A simple obstacle avoidance algorithm, exploiting the analytic form of natural motions, is also described and implemented in simulation. The computational efficiency of the motion planning method is discussed

    Planning natural repointing manoeuvres for nano-spacecraft

    Get PDF
    In this paper the natural dynamics of a rigid body are exploited to plan attitude manoeuvres for a small spacecraft. By utilising the analytical solutions of the angular velocities and making use of Lax pair integration, the time evolution of the attitude of the spacecraft in a convenient quaternion form is derived. This enables repointing manoeuvres to be generated by optimising the free parameters of the analytical expressions, the initial angular velocities of the spacecraft, to match prescribed boundary conditions on the final attitude of the spacecraft. This produces reference motions which can be tracked using a simple proportional-derivative controller. The natural motions are compared in simulation to a conventional quaternion feedback controller and found to require lower accumulated torque. A simple obstacle avoidance algorithm, exploiting the analytic form of natural motions, is also described and implemented in simulation. The computational efficiency of the motion planning method is discussed

    An application of adaptive fault-tolerant control to nano-spacecraft

    Get PDF
    Since nano-spacecraft are small, low cost and do not undergo the same rigor of testing as conventional spacecraft, they have a greater risk of failure. In this paper we address the problem of attitude control of a nano-spacecraft that experiences different types of faults. Based on the traditional quaternion feedback control method, an adaptive fault-tolerant control method is developed, which can ensure that the control system still operates when the actuator fault happens. This paper derives the fault-tolerant control logic under both actuator gain fault mode and actuator deviation fault mode. Taking the parameters of the UKube-1 in the simulation model, a comparison between a traditional spacecraft control method and the adaptive fault-tolerant control method in the presence of a fault is undertaken. It is shown that the proposed controller copes with faults and is able to complete an effective attitude control manoeuver in the presence of a fault

    Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization

    Get PDF
    This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted

    Orbiting Geophysical Observatory Attitude Control Subsystem design survey

    Get PDF
    Development history and design modifications for attitude control subsystem of OG

    Heteroclinic optimal control solutions for attitude motion planning

    Get PDF
    An analytical attitude motion planning method is presented that exploits the heteroclinic connections of an optimal kinematic control problem. This class of motion, of hyperbolic type, supply a special case of analytically defined rotations that can be further optimised to select a suitable reference motion that minimises accumulated torque and the final orientation error amongst these motions. This analytical approach could be used to improve the overall performance of a spacecraft’s attitude dynamics and control system when used alongside current flight tested tracking controllers. The resulting algorithm only involves optimising a small number of parameters of standard functions and is simple to implement

    A nonlinear estimator for reconstructing the angular velocity of a spacecraft without rate gyros

    Get PDF
    A scheme for estimating the angular velocity of a spacecraft without rate gyros is presented. It is based upon a nonlinear estimator whose inputs are measured inertial vectors and their calculated time derivatives relative to vehicle axes. It works for all spacecraft attitudes and requires no knowledge of attitude. It can use measurements from a variety of onboard sensors like Sun sensors, star trackers, or magnetometers, and in concert. It can also use look angle measurements from onboard tracking antennas for tracking and data relay satellites or global positioning system satellites. In this paper, it is applied to a Sun point scheme on the Hubble Space Telescope assuming all or most of its onboard rate gyros have failed. Simulation results are presented for verification

    Computationally light attitude controls for resource limited nano-spacecraft

    Get PDF
    Nano-spacecraft have emerged as practical alternatives to large conventional spacecraft for specific missions (e.g. as technology demonstrators) due to their low cost and short time to launch. However these spacecraft have a number of limitations compared to larger spacecraft: a tendency to tumble post-launch; lower computational power in relation to larger satellites and limited propulsion systems due to small payload capacity. As a result new methodologies for attitude control are required to meet the challenges associated with nano-spacecraft. This paper presents two novel attitude control methods to tackle two phases of a mission using zero-propellant (i) the detumbling post-launch and (ii) the repointing of nano-spacecraft. The first method consists of a time-delayed feedback control law which is applied to a magnetically actuated spacecraft and used for autonomous detumbling. The second uses geometric mechanics to construct zero propellant reference manoeuvres which are then tracked using quaternion feedback control. The problem of detumbling a magnetically actuated spacecraft in the first phase of a mission is conventionally tackled using BDOT control. This involves applying controls which are proportional to the rate of change of the magnetic field. However, real systems contain sensor noise which can lead to discontinuities in the signal and problems with computing the numerical derivative. This means that a noise filter must be used and this increases the computational overhead of the system. It is shown that a timedelayed feedback control law is advantageous as the use of a delayed signal rather than a derivative negates the need for such a filter, thus reducing computational overhead. The second phase of the mission is the repointing of the spacecraft to a desired target. Exploiting the analytic solutions of the angular velocities of a symmetric spacecraft and further using Lax pair integration it is possible to derive exact equations of the natural motions including the time evolution of the quaternions. It is shown that parametric optimisation of these solutions can be used to generate low torque reference motions that match prescribed boundary conditions on the initial and final configurations. Through numerical simulation it is shown that these references can be tracked using nanospacecraft reaction wheels while eigenaxis rotations, used for comparison, are more torque intensive. As the method requires parameter optimisation as opposed to optimisation methods that require numerical integration, the computational effort is reduced

    Space science/space station attached payload pointing accommodation study: Technology assessment white paper

    Get PDF
    Technology assessment is performed for pointing systems that accommodate payloads of large mass and large dimensions. Related technology areas are also examined. These related areas include active thermal lines or power cables across gimbals, new materials for increased passive damping, tethered pointing, and inertially reacting pointing systems. Conclusions, issues and concerns, and recommendations regarding the status and development of large pointing systems for space applications are made based on the performed assessments

    Orbiting Geophysical Observatory Attitude Control Subsystem Design Survey. NASA/ERC Design Criteria Program, Guidance and Control

    Get PDF
    This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers
    • …
    corecore