4 research outputs found

    A Method to Quantitatively Evaluate Geo Augmented Reality Applications

    Get PDF
    International audienceWe propose a method for quantitatively assessing the quality of Geo AR browsers. Our method aims at measuring the impact of attitude and position estimations on the rendering precision of virtual features. We report on lessons learned by applying our method on various AR use cases with real data. Our measurement technique allows to shedding light on the limits of what can be achieved in Geo AR with current technologies. This also helps in identifying interesting perspectives for the further development of high-quality Geo AR applications

    Usability framework for mobile augmented reality language learning

    Get PDF
    After several decades since its introduction, the existing ISO9241-11 usability framework is still vastly used in Mobile Augmented Reality (MAR) language learning. The existing framework is generic and can be applied to diverse emerging technologies such as electronic and mobile learning. However, technologies like MAR have interaction properties that are significantly unique and require different usability processes. Hence, implementing the existing framework on MAR can lead to non-optimized, inefficient, and ineffective outcomes. Furthermore, state-of-the-art analysis models such as machine learning are not apparent in MAR usability studies, despite evidence of positive outcomes in other learning technologies. In recent MAR learning studies, machine learning benefits such as problem identification and prioritization were non-existent. These setbacks could slow down the advancement of MAR language learning, which mainly aims to improve language proficiency among MAR users, especially in English communication. Therefore, this research proposed the Usability Framework for MAR (UFMAR) that addressed the currently identified research problems and gaps in language learning. UFMAR introduced an improved data collection method called Individual Interaction Clustering-based Usability Measuring Instrument (IICUMI), followed by a machine learning-driven analysis model called Clustering-based Usability Prioritization Analysis (CUPA) and a prioritization quantifier called Usability Clustering Prioritization Model (UCPM). UFMAR showed empirical evidence of significantly improving usability in MAR, capitalizing on its unique interaction properties. UFMAR enhanced the existing framework with new abilities to systematically identify and prioritize MAR usability issues. Through the experimental results of UFMAR, it was found that the IICUMI method was 50% more effective, while CUPA and UCPM were 57% more effective than the existing framework. The outcome through UFMAR also produced 86% accuracy in analysis results and was 79% more efficient in framework implementation. UFMAR was validated through three cycles of the experimental processes, with triangulation through expert reviews, to be proven as a fitting framework for MAR language learning

    Attitude Estimation for Indoor Navigation and Augmented Reality with Smartphones

    Get PDF
    International audienceWe investigate the precision of attitude estimation algorithms in the particular context of pedestrian navigation with commodity smartphones and their inertial/magnetic sensors. We report on an extensive comparison and experimental analysis of existing algorithms. We focus on typical motions of smartphones when carried by pedestrians. We use a precise ground truth obtained from a motion capture system. We test state-of-the-art and built-in attitude estimation techniques with several smartphones, in the presence of magnetic perturbations typically found in buildings. We discuss the obtained results, analyze advantages and limits of current technologies for attitude estimation in this context. Furthermore, we propose a new technique for limiting the impact of magnetic perturbations with any attitude estimation algorithm used in this context. We show how our technique compares and improves over previous works. A particular attention was paid to the study of attitude estimation in the context of augmented reality motions when using smartphones
    corecore