4 research outputs found

    Attitude estimation for dynamic legged locomotion using range and inertial sensors

    Full text link
    Legged robots offer exceptional mobility in uncharted terrains. Their dynamic nature yields unrivaled mobility, but serves to destabilize the motion estimation process that underlies legged operations. In particular, the discontinuous foot fall patterns and flight phases result in severe impulses, which, in turn, result in excessive accumulation of drift by inertial sensors. Ground range measurements, amongst several others, are robust to this drift yet are limited in application due to their low-bandwidth and sensitivity to ground conditions. In considering the attitude estimation problem for this dynamic legged locomotion, this paper develops a pose calculation method based on ground range measurements. This is used in conjunction with a hybrid Extended Kalman Filter that takes advantage of the ballistic nature of the flight phases. Results indicate that this combination provides rapid, robust estimates of attitude necessary for extended dynamic legged operations. In single leg experiments, which were conducted using low-cost sensing hardware, this method had an RMS error of <1°, half that of a non-hybrid EKF approach. ©2005 IEEE

    Thrust control, stabilization and energetics of a quadruped running robot

    Full text link
    In order to achieve powered autonomous running robots it is essential to develop efficient actuator systems, especially for generating the radial thrust in the legs. In addition, the control of the radial thrust of the legs can be a simple, effective method for stabilizing the body pitch in a running gait. This paper presents the mechanical systems, models and control strategies employed to generate and control leg thrust in the KOLT quadruped running robot. An analytical model of the electro-pneumatic leg thrusting system is presented and analyzed to evaluate its performance and to facilitate the design of control strategies. Several experiments have been conducted to estimate the energy losses and determine their origins as well as to compute the energetic efficiency of the actuation system. Two thrust control methods are also proposed and tested experimentally. The closed loop method regulates thrust through the control of the hip liftoff speed, a conceptually simple control strategy that stabilizes the body pitch in pronk and trot gaits without the need for central feedback, even on irregular terrain. The open-loop control method regulates the energy added in each hop based on the model of the actuator system. The efficacy of these models and techniques is tested in several planar trot and pronk experiments, and the results are analyzed focusing on the body stabilization, the power consumption and the energetic efficiency. © SAGE Publications 2008 Los Angeles

    Master of Science

    Get PDF
    thesisThis research studies the passive dynamics of an under-actuated trotting quadruped. The goal of this project is to perform three-dimensional (3D) dynamic simulations of a trotting quadruped robot to find proper leg configurations and stiffness range, in order to achieve stable trotting gait. First, a 3D simulation framework that includes all the six degrees of freedom of the body is introduced. Directionally compliant legs together with different leg configurations are employed to achieve passive stability. Compliant legs passively support the body during stance phase and during flight phase a motor is used to retract the legs. Leg configurations in the robot's sagittal and frontal plane are introduced. Numerical experiments are conducted to search the design space of the leg, focusing on increasing the passive stability of the robot. Increased stability is defined as decreased pitching, rolling, and yawing motion of the robot. The results indicate that optimized leg parameters can guarantee passive stable trotting with reduced roll, pitch, and yaw. Studies suggest that a quadruped robot with compliant legs is dynamically stable while trotting. Results indicate that the robot based on a biological model (i.e., caudal inclination of humeri and cranial inclination of femora) has the best performance. Stiff springs at hips and shoulders, soft spring at knees and elbows, and stiff springs at ankles and wrists are recommended. The results of this project provide a conceptual framework for understanding the movements of a trotting quadruped

    Attitude Estimation for Dynamic Legged Locomotion Using Range and Inertial Sensors

    No full text
    corecore