537 research outputs found

    Cognitive Representation Learning of Self-Media Online Article Quality

    Full text link
    The automatic quality assessment of self-media online articles is an urgent and new issue, which is of great value to the online recommendation and search. Different from traditional and well-formed articles, self-media online articles are mainly created by users, which have the appearance characteristics of different text levels and multi-modal hybrid editing, along with the potential characteristics of diverse content, different styles, large semantic spans and good interactive experience requirements. To solve these challenges, we establish a joint model CoQAN in combination with the layout organization, writing characteristics and text semantics, designing different representation learning subnetworks, especially for the feature learning process and interactive reading habits on mobile terminals. It is more consistent with the cognitive style of expressing an expert's evaluation of articles. We have also constructed a large scale real-world assessment dataset. Extensive experimental results show that the proposed framework significantly outperforms state-of-the-art methods, and effectively learns and integrates different factors of the online article quality assessment.Comment: Accepted at the Proceedings of the 28th ACM International Conference on Multimedi

    Advancement Auto-Assessment of Students Knowledge States from Natural Language Input

    Get PDF
    Knowledge Assessment is a key element in adaptive instructional systems and in particular in Intelligent Tutoring Systems because fully adaptive tutoring presupposes accurate assessment. However, this is a challenging research problem as numerous factors affect students’ knowledge state estimation such as the difficulty level of the problem, time spent in solving the problem, etc. In this research work, we tackle this research problem from three perspectives: assessing the prior knowledge of students, assessing the natural language short and long students’ responses, and knowledge tracing.Prior knowledge assessment is an important component of knowledge assessment as it facilitates the adaptation of the instruction from the very beginning, i.e., when the student starts interacting with the (computer) tutor. Grouping students into groups with similar mental models and patterns of prior level of knowledge allows the system to select the right level of scaffolding for each group of students. While not adapting instruction to each individual learner, the advantage of adapting to groups of students based on a limited number of prior knowledge levels has the advantage of decreasing the authoring costs of the tutoring system. To achieve this goal of identifying or clustering students based on their prior knowledge, we have employed effective clustering algorithms. Automatically assessing open-ended student responses is another challenging aspect of knowledge assessment in ITSs. In dialogue-based ITSs, the main interaction between the learner and the system is natural language dialogue in which students freely respond to various system prompts or initiate dialogue moves in mixed-initiative dialogue systems. Assessing freely generated student responses in such contexts is challenging as students can express the same idea in different ways owing to different individual style preferences and varied individual cognitive abilities. To address this challenging task, we have proposed several novel deep learning models as they are capable to capture rich high-level semantic features of text. Knowledge tracing (KT) is an important type of knowledge assessment which consists of tracking students’ mastery of knowledge over time and predicting their future performances. Despite the state-of-the-art results of deep learning in this task, it has many limitations. For instance, most of the proposed methods ignore pertinent information (e.g., Prior knowledge) that can enhance the knowledge tracing capability and performance. Working toward this objective, we have proposed a generic deep learning framework that accounts for the engagement level of students, the difficulty of questions and the semantics of the questions and uses a novel times series model called Temporal Convolutional Network for future performance prediction. The advanced auto-assessment methods presented in this dissertation should enable better ways to estimate learner’s knowledge states and in turn the adaptive scaffolding those systems can provide which in turn should lead to more effective tutoring and better learning gains for students. Furthermore, the proposed method should enable more scalable development and deployment of ITSs across topics and domains for the benefit of all learners of all ages and backgrounds

    Comparison Study Between Token Classification and Sequence Classification In Text Classification

    Full text link
    Unsupervised Machine Learning techniques have been applied to Natural Language Processing tasks and surpasses the benchmarks such as GLUE with great success. Building language models approach achieves good results in one language and it can be applied to multiple NLP task such as classification, summarization, generation and etc as an out of box model. Among all the of the classical approaches used in NLP, the masked language modeling is the most used. In general, the only requirement to build a language model is presence of the large corpus of textual data. Text classification engines uses a variety of models from classical and state of art transformer models to classify texts for in order to save costs. Sequence Classifiers are mostly used in the domain of text classification. However Token classifiers also are viable candidate models as well. Sequence Classifiers and Token Classifier both tend to improve the classification predictions due to the capturing the context information differently. This work aims to compare the performance of Sequence Classifier and Token Classifiers and evaluate each model on the same set of data. In this work, we are using a pre-trained model as the base model and Token Classifier and Sequence Classier heads results of these two scoring paradigms with be compared..Comment: 11 Pages, 3, figure

    Co-Attention Based Neural Network for Source-Dependent Essay Scoring

    Full text link
    This paper presents an investigation of using a co-attention based neural network for source-dependent essay scoring. We use a co-attention mechanism to help the model learn the importance of each part of the essay more accurately. Also, this paper shows that the co-attention based neural network model provides reliable score prediction of source-dependent responses. We evaluate our model on two source-dependent response corpora. Results show that our model outperforms the baseline on both corpora. We also show that the attention of the model is similar to the expert opinions with examples.Comment: Published in BEA 13 worksho
    • …
    corecore