100 research outputs found

    Attainability in Repeated Games with Vector Payoffs

    Get PDF
    We introduce the concept of attainable sets of payoffs in two-player repeated games with vector payoffs. A set of payoff vectors is called {\em attainable} if player 1 can ensure that there is a finite horizon TT such that after time TT the distance between the set and the cumulative payoff is arbitrarily small, regardless of what strategy player 2 is using. This paper focuses on the case where the attainable set consists of one payoff vector. In this case the vector is called an attainable vector. We study properties of the set of attainable vectors, and characterize when a specific vector is attainable and when every vector is attainable.Comment: 28 pages, 2 figures, conference version at NetGCoop 201

    Lyapunov stochastic stability and control of robust dynamic coalitional games with transferable utilities

    Get PDF
    This paper considers a dynamic game with transferable utilities (TU), where the characteristic function is a continuous-time bounded mean ergodic process. A central planner interacts continuously over time with the players by choosing the instantaneous allocations subject to budget constraints. Before the game starts, the central planner knows the nature of the process (bounded mean ergodic), the bounded set from which the coalitions' values are sampled, and the long run average coalitions' values. On the other hand, he has no knowledge of the underlying probability function generating the coalitions' values. Our goal is to find allocation rules that use a measure of the extra reward that a coalition has received up to the current time by re-distributing the budget among the players. The objective is two-fold: i) guaranteeing convergence of the average allocations to the core (or a specific point in the core) of the average game, ii) driving the coalitions' excesses to an a priori given cone. The resulting allocation rules are robust as they guarantee the aforementioned convergence properties despite the uncertain and time-varying nature of the coaltions' values. We highlight three main contributions. First, we design an allocation rule based on full observation of the extra reward so that the average allocation approaches a specific point in the core of the average game, while the coalitions' excesses converge to an a priori given direction. Second, we design a new allocation rule based on partial observation on the extra reward so that the average allocation converges to the core of the average game, while the coalitions' excesses converge to an a priori given cone. And third, we establish connections to approachability theory and attainability theory

    Approachability in population games

    Get PDF
    This paper reframes approachability theory within the context of population games. Thus, whilst a player still aims at driving her average payoff to a predefined set, her opponent is no longer malevolent but instead is extracted randomly at each instant of time from a population of individuals choosing actions in a similar manner. First, we define the notion of 1st-moment approachability, a weakening of Blackwell's approachability. Second, since the endogenous evolution of the population's play is then important, we develop a model of two coupled partial differential equations (PDEs) in the spirit of mean-field game theory: one describing the best-response of every player given the population distribution, the other capturing the macroscopic evolution of average payoffs if every player plays her best response. Third, we provide a detailed analysis of existence, nonuniqueness, and stability of equilibria (fixed points of the two PDEs). Fourth, we apply the model to regret-based dynamics, and use it to establish convergence to Bayesian equilibrium under incomplete information.</p

    Opinion Dynamics in Social Networks through Mean-Field Games

    Get PDF
    Emulation, mimicry, and herding behaviors are phenomena that are observed when multiple social groups interact. To study such phenomena, we consider in this paper a large population of homogeneous social networks. Each such network is characterized by a vector state, a vector-valued controlled input and a vector-valued exogenous disturbance. The controlled input of each network is to align its state to the mean distribution of other networks’ states in spite of the actions of the disturbance. One of the contributions of this paper is a detailed analysis of the resulting mean field game for the cases of both polytopic and L2 bounds on controls and disturbances. A second contribution is the establishment of a robust mean-field equilibrium, that is, a solution including the worst-case value function, the state feedback best-responses for the controlled inputs and worst-case disturbances, and a density evolution. This solution is characterized by the property that no player can benefit from a unilateral deviation even in the presence of the disturbance. As a third contribution, microscopic and macroscopic analyses are carried out to show convergence properties of the population distribution using stochastic stability theory
    • …
    corecore