3,013 research outputs found

    Fullerene graphs have exponentially many perfect matchings

    Full text link
    A fullerene graph is a planar cubic 3-connected graph with only pentagonal and hexagonal faces. We show that fullerene graphs have exponentially many perfect matchings.Comment: 7 pages, 3 figure

    On Cyclic Edge-Connectivity of Fullerenes

    Full text link
    A graph is said to be cyclic kk-edge-connected, if at least kk edges must be removed to disconnect it into two components, each containing a cycle. Such a set of kk edges is called a cyclic-kk-edge cutset and it is called a trivial cyclic-kk-edge cutset if at least one of the resulting two components induces a single kk-cycle. It is known that fullerenes, that is, 3-connected cubic planar graphs all of whose faces are pentagons and hexagons, are cyclic 5-edge-connected. In this article it is shown that a fullerene FF containing a nontrivial cyclic-5-edge cutset admits two antipodal pentacaps, that is, two antipodal pentagonal faces whose neighboring faces are also pentagonal. Moreover, it is shown that FF has a Hamilton cycle, and as a consequence at least 152n2015\cdot 2^{\lfloor \frac{n}{20}\rfloor} perfect matchings, where nn is the order of FF.Comment: 11 pages, 9 figure

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    A Structure Theorem for Small Sumsets in Nonabelian Groups

    Full text link
    Let G be an arbitrary finite group and let S and T be two subsets such that |S|>1, |T|>1, and |TS|< |T|+|S|< |G|-1. We show that if |S|< |G|-4|G|^{1/2}+1 then either S is a geometric progression or there exists a non-trivial subgroup H such that either |HS|< |S|+|H| or |SH| < |S|+|H|. This extends to the nonabelian case classical results for Abelian groups. When we remove the hypothesis |S|<|G|-4|G|^{1/2}+1 we show the existence of counterexamples to the above characterization whose structure is described precisely.Comment: 23 page

    Fullerenes with the maximum Clar number

    Full text link
    The Clar number of a fullerene is the maximum number of independent resonant hexagons in the fullerene. It is known that the Clar number of a fullerene with n vertices is bounded above by [n/6]-2. We find that there are no fullerenes whose order n is congruent to 2 modulo 6 attaining this bound. In other words, the Clar number for a fullerene whose order n is congruent to 2 modulo 6 is bounded above by [n/6]-3. Moreover, we show that two experimentally produced fullerenes C80:1 (D5d) and C80:2 (D2) attain this bound. Finally, we present a graph-theoretical characterization for fullerenes, whose order n is congruent to 2 (respectively, 4) modulo 6, achieving the maximum Clar number [n/6]-3 (respectively, [n/6]-2)
    corecore