247,546 research outputs found

    State- and event-based refinement

    Get PDF
    In this paper we give simple example abstract data types, with atomic operations, that are related by data refinement under a definition used widely in the literature, but these abstract data types are not related by singleton failure refinement. This contradicts results found in the literature. Further we show that a common way to change a model of atomic operations to one of value passing operations actually changes the underlying atomic operational semantics

    Ultracold molecules: vehicles to scalable quantum information processing

    Full text link
    We describe a novel scheme to implement scalable quantum information processing using Li-Cs molecular state to entangle 6^{6}Li and 133^{133}Cs ultracold atoms held in independent optical lattices. The 6^{6}Li atoms will act as quantum bits to store information, and 133^{133}Cs atoms will serve as messenger bits that aid in quantum gate operations and mediate entanglement between distant qubit atoms. Each atomic species is held in a separate optical lattice and the atoms can be overlapped by translating the lattices with respect to each other. When the messenger and qubit atoms are overlapped, targeted single spin operations and entangling operations can be performed by coupling the atomic states to a molecular state with radio-frequency pulses. By controlling the frequency and duration of the radio-frequency pulses, entanglement can either be created or swapped between a qubit messenger pair. We estimate operation fidelities for entangling two distant qubits and discuss scalability of this scheme and constraints on the optical lattice lasers

    Clones from Creatures

    Full text link
    A clone on a set X is a set of finitary operations on X which contains all the projections and is closed under composition. The set of all clones forms a complete lattice Cl(X) with greatest element O, the set of all finitary operations. For finite sets X the lattice is "dually atomic": every clone other than O is below a coatom of Cl(X). It was open whether Cl(X) is also dually atomic for infinite X. Assuming the continuum hypothesis, we show that there is a clone C on a countable set such that the interval of clones above C is linearly ordered, uncountable, and has no coatoms.Comment: LaTeX2e, 20 pages. Revised version: some concepts simplified, proof details adde

    A Wait-free Multi-word Atomic (1,N) Register for Large-scale Data Sharing on Multi-core Machines

    Get PDF
    We present a multi-word atomic (1,N) register for multi-core machines exploiting Read-Modify-Write (RMW) instructions to coordinate the writer and the readers in a wait-free manner. Our proposal, called Anonymous Readers Counting (ARC), enables large-scale data sharing by admitting up to 23222^{32}-2 concurrent readers on off-the-shelf 64-bits machines, as opposed to the most advanced RMW-based approach which is limited to 58 readers. Further, ARC avoids multiple copies of the register content when accessing it---this affects classical register's algorithms based on atomic read/write operations on single words. Thus it allows for higher scalability with respect to the register size. Moreover, ARC explicitly reduces improves performance via a proper limitation of RMW instructions in case of read operations, and by supporting constant time for read operations and amortized constant time for write operations. A proof of correctness of our register algorithm is also provided, together with experimental data for a comparison with literature proposals. Beyond assessing ARC on physical platforms, we carry out as well an experimentation on virtualized infrastructures, which shows the resilience of wait-free synchronization as provided by ARC with respect to CPU-steal times, proper of more modern paradigms such as cloud computing.Comment: non
    corecore