13,340 research outputs found

    Slip and Adhesion in a Railway Wheelset Simulink Model Proposed for Detection Driving Conditions Via Neural Networks

    Get PDF
    Constantly enlarging operation of locomotives with a very high tractive power in modern railway transport has caused problems with optimal supplying torque from motor to wheel-sets. Losses emerging with inadequate torque values lead to wheel slipping connected with excessive wear and limited acceleration. In models simulating dynamics of torque transmission from the drive units to wheels, the most important are the submodel of the drive and the submodel of balance between traction forces and drive resistances. Some issues of this field studied within a PhD program and SGS (CTU Students Grant Competition) has been focused on increasing quality of these submodels. This contribution is aimed at an innovated part in the existing Simulink model utilizing new data sources and modeling techniques. This improvement supports application of operating point detection methods based on machine learning techniques. New control facilities provided with pulse-width modulated frequency control of the asynchronous motor will be used for automatic submission of optimal operating points. The idea of utilization of via simulation obtained data is an on-line training of polynomial neural unit as an approximation of current driving conditions.Neustále narůstající provoz lokomotiv s velmi vysokým trakčním výkonem v moderní železniční dopravě způsobuje problémy s přenosem optimálního hnacího momentu z motoru na dvojkolí. Ztráty vyplývající z nevhodných hodnot točivého momentu vedou k prokluzu kol spojeným s nadměrným opotřebením a omezeným zrychlením. V modelech simulujících dynamiku přenosu točivého momentu z pohonné jednotky na dvojkolí jsou nejdůležitější submodely pohonu a rovnováhy mezi trakčními silami a jízdními odpory. Výzkum prováděný v rámci doktorských studijních programů a SGS (Studentská grantová soutěž ČVUT) se zaměřuje na zvyšování kvality těchto submodelů. Tento příspěvek je zaměřen na inovovanou část v existujícím Simulink modelu využívajícím nové zdroje dat a technik modelování. Nové možnosti regulace zajištěné pulzně-šířkovou frekvenční regulací asynchronního motoru budou použity pro automatické poskytnutí optimálních provozních bodů. Představa využití simulací získaných dat je on-line učení polynomické neuronové jednotky jako aproximace současných jízdních podmínek

    Effect of disorder and noise in shaping the dynamics of power grids

    Full text link
    The aim of this paper is to investigate complex dynamic networks which can model high-voltage power grids with renewable, fluctuating energy sources. For this purpose we use the Kuramoto model with inertia to model the network of power plants and consumers. In particular, we analyse the synchronization transition of networks of NN phase oscillators with inertia (rotators) whose natural frequencies are bimodally distributed, corresponding to the distribution of generator and consumer power. First, we start from globally coupled networks whose links are successively diluted, resulting in a random Erd\"os-Renyi network. We focus on the changes in the hysteretic loop while varying inertial mass and dilution. Second, we implement Gaussian white noise describing the randomly fluctuating input power, and investigate its role in shaping the dynamics. Finally, we briefly discuss power grid networks under the impact of both topological disorder and external noise sources.Comment: 7 pages, 6 figure

    Peripatetic electronic teachers in higher education

    Get PDF
    This paper explores the idea of information and communications technology providing a medium enabling higher education teachers to act as freelance agents. The notion of a ‘Peripatetic Electronic Teacher’ (PET) is introduced to encapsulate this idea. PETs would exist as multiple telepresences (pedagogical, professional, managerial and commercial) in PET‐worlds; global networked environments which support advanced multimedia features. The central defining rationale of a pedagogical presence is described in detail and some implications for the adoption of the PET‐world paradigm are discussed. The ideas described in this paper were developed by the author during a recently completed Short‐Term British Telecom Research Fellowship, based at the BT Adastral Park

    A SON Solution for Sleeping Cell Detection Using Low-Dimensional Embedding of MDT Measurements

    Get PDF
    Automatic detection of cells which are in outage has been identified as one of the key use cases for Self Organizing Networks (SON) for emerging and future generations of cellular systems. A special case of cell outage, referred to as Sleeping Cell (SC) remains particularly challenging to detect in state of the art SON because in this case cell goes into outage or may perform poorly without triggering an alarm for Operation and Maintenance (O&M) entity. Consequently, no SON compensation function can be launched unless SC situation is detected via drive tests or through complaints registered by the affected customers. In this paper, we present a novel solution to address this problem that makes use of minimization of drive test (MDT) measurements recently standardized by 3GPP and NGMN. To overcome the processing complexity challenge, the MDT measurements are projected to a low-dimensional space using multidimensional scaling method. Then we apply state of the art k-nearest neighbor and local outlier factor based anomaly detection models together with pre-processed MDT measurements to profile the network behaviour and to detect SC. Our numerical results show that our proposed solution can automate the SC detection process with 93 accuracy

    Asynchronously Trained Distributed Topographic Maps

    Full text link
    Topographic feature maps are low dimensional representations of data, that preserve spatial dependencies. Current methods of training such maps (e.g. self organizing maps - SOM, generative topographic maps) require centralized control and synchronous execution, which restricts scalability. We present an algorithm that uses NN autonomous units to generate a feature map by distributed asynchronous training. Unit autonomy is achieved by sparse interaction in time \& space through the combination of a distributed heuristic search, and a cascade-driven weight updating scheme governed by two rules: a unit i) adapts when it receives either a sample, or the weight vector of a neighbor, and ii) broadcasts its weight vector to its neighbors after adapting for a predefined number of times. Thus, a vector update can trigger an avalanche of adaptation. We map avalanching to a statistical mechanics model, which allows us to parametrize the statistical properties of cascading. Using MNIST, we empirically investigate the effect of the heuristic search accuracy and the cascade parameters on map quality. We also provide empirical evidence that algorithm complexity scales at most linearly with system size NN. The proposed approach is found to perform comparably with similar methods in classification tasks across multiple datasets.Comment: 11 Pages, 8 Figures
    corecore