535 research outputs found

    An asynchronous, forward-backward, distributed generalized Nash equilibrium seeking algorithm

    Get PDF
    In this paper, we propose an asynchronous distributed algorithm for the computation of generalized Nash equilibria in noncooperative games, where the players interact via an undirected communication graph. Specifically, we extend the paper "Asynchronous distributed algorithm for seeking generalized Nash equilibria" by Yi and Pavel: we redesign the asynchronous update rule using auxiliary variables over the nodes rather than over the edges. This key modification renders the algorithm scalable for highly interconnected games. The derived asynchronous algorithm is robust against delays in the communication and it eliminates the idle times between computations, hence modeling a more realistic interaction between players with different update frequencies. We address the problem from an operator-theoretic perspective and design the algorithm via a preconditioned forward-backward splitting. Finally, we numerically simulate the algorithm for the Cournot competition in networked markets.Comment: Submitted to European Control Conference 2019 (under review

    An asynchronous distributed and scalable generalized Nash equilibrium seeking algorithm for strongly monotone games

    Get PDF
    In this paper, we present three distributed algorithms to solve a class of Generalized Nash Equilibrium (GNE) seeking problems in strongly monotone games. The first one (SD-GENO) is based on synchronous updates of the agents, while the second and the third (AD-GEED and AD-GENO) represent asynchronous solutions that are robust to communication delays. AD-GENO can be seen as a refinement of AD-GEED, since it only requires node auxiliary variables, enhancing the scalability of the algorithm. Our main contribution is to prove convergence to a v-GNE variational-GNE (vGNE) of the game via an operator-theoretic approach. Finally, we apply the algorithms to network Cournot games and show how different activation sequences and delays affect convergence. We also compare the proposed algorithms to a state-of-the-art algorithm solving a similar problem, and observe that AD-GENO outperforms it.</p

    Distributed Learning for Stochastic Generalized Nash Equilibrium Problems

    Full text link
    This work examines a stochastic formulation of the generalized Nash equilibrium problem (GNEP) where agents are subject to randomness in the environment of unknown statistical distribution. We focus on fully-distributed online learning by agents and employ penalized individual cost functions to deal with coupled constraints. Three stochastic gradient strategies are developed with constant step-sizes. We allow the agents to use heterogeneous step-sizes and show that the penalty solution is able to approach the Nash equilibrium in a stable manner within O(μmax)O(\mu_\text{max}), for small step-size value μmax\mu_\text{max} and sufficiently large penalty parameters. The operation of the algorithm is illustrated by considering the network Cournot competition problem

    Multi-agent network games with applications in smart electric mobility

    Get PDF
    The growing complexity and globalization of modern society brought to light novel problems and challenges for researchers that aim to model real-life phenomena. Nowadays communities and even single individuals cannot be considered as a closed system, since one's actions create a ripple effect that ends up influencing the action of others. Therefore, the study of decision-making processes over networks became a pivotal topic in the research community. The possible applications are virtually endless and span into many different fields. Two of the most relevant examples are smart mobility and energy management in highly populated cities, where a collection of (partially) noncooperative individuals interact over a network trying to reach an efficient equilibrium point, in the sense of Nash, and share limited resources due to the environment in which they operate. In this work, we approach these problems through the lens of game theory. We use different declinations of this powerful mathematical tool to study several aspects of these themes. We design decentralized iterative algorithms solving generalized network games that generate behavioral rules for the players that, if followed, ensure global convergence. Then, we question the classical assumption of perfect players’ rationality by introducing novel dynamics to model partial rationality and analyzing their properties. We conclude by focusing on the design of optimal policies to regulate smart mobility and energy management. In this case, we create a detailed and more realistic description of the problem and use a nudging mechanism, implemented by means of a semi-decentralized algorithm, to align the users' behavior with the one desired by the policymaker
    • …
    corecore