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An asynchronous, forward-backward, distributed generalized Nash
equilibrium seeking algorithm

Carlo Cenedese1 Giuseppe Belgioioso2 Sergio Grammatico3 Ming Cao1

Abstract— In this paper, we propose an asynchronous dis-
tributed algorithm for the computation of generalized Nash
equilibria in noncooperative games, where the players interact
via an undirected communication graph. Specifically, we extend
the paper “Asynchronous distributed algorithm for seeking
generalized Nash equilibria” by Yi and Pavel: we redesign
the asynchronous update rule using auxiliary variables over
the nodes rather than over the edges. This key modification
renders the algorithm scalable for highly interconnected games.
The derived asynchronous algorithm is robust against delays
in the communication and it eliminates the idle times between
computations, hence modeling a more realistic interaction
between players with different update frequencies. We address
the problem from an operator-theoretic perspective and design
the algorithm via a preconditioned forward-backward splitting.
Finally, we numerically simulate the algorithm for the Cournot
competition in networked markets.

I. INTRODUCTION

A. Motivation and literature overview

Noncooperative generalized games over networks is cur-
rently a very active research field, due to the spreading of
multi-agent network systems in modern society. Such type of
games emerge in several application domains, such as smart
grids [1], [2], social networks [3] and robotics [4]. In a game
setup the players, or agents, have a private and local objective
function that depends on the decisions of some other players,
which shall be minimized while satisfying both local and
global, coupling, constraints. Typically each agent defines
its decision, or strategy, based on some local information
exchanged with a subset of other agents, called neighbors.
Various authors proposed solutions to this problem [5], [3],
[6]. So, all the agents shall wait until the slowest one in the
network completes its update, before starting a new oper-
ation. This can slow down the convergence drammatically,
especially in large scale and heterogeneous systems. On the
other hand, adopting an asynchronous update reduces the idle
times, increasing efficiency. In addition, it can also speed up
the convergence, facilitate the insertion of new agents in the
network and even increse robusteness w.r.t. communication

1 Engineering and Technology Institute Groningen (ENTEG), Fac-
ulty of Science and Engineering, University of Groningen, The Nether-
lands c.cenedese@rug.nl and m.cao@rug.nl. The work of
Cenedese, and Cao was supported in part by the European Research
Council (ERC-CoG-771687) and the Netherlands Organization for Scientific
Research (NWO-vidi-14134).

2 Control System group, TU Eindhoven, 5600 MB Eindhoven, The
Netherlands g.belgioioso@tue.nl.

3 Delft Center for Systems and Control, TU Delft, The Nether-
lands s.grammatico@tudelft.nl. The work of Grammatico was
partially supported by NWO, under research projects OMEGA (TOP
613.001.702) and P2P-TALES (ESI-BIDA 647.003.003) and by the ERC
under research project COSMOS (ERC-StG 802348).

faults [7]. During the past years, several asynchronous algo-
rithms for distributed convex optimization were proposed [8],
[9], converging under different assumptions. The novel work
in [10], provides a simple framework (ARock) to develop
a wide range of iterative fixed point algorithms based on
nonexpansive operators and it is already adopted in [11] to
seek variational GNE seeking under equality constraints and
using edge variables.

In this paper, we propose an extension of the work in [11].
Specifically, we consider inequality coupling constraints and
use a restricted set of auxiliary variables, namely, associated
with the nodes rather than with the edges. Especially this
latter upgrade is non-trivial and presents technical challenges
in the asynchronous implementation of the algorithm, which
we overcome by analyzing the influence of the delayed
information on the update of the auxiliary variables. The use
of node variables only, rather than edge variables, preserves
the scalability of the algorithm.

B. NOTATION

We use the same basic and operator-theoretic notations
as in [12]. In addition, for a square matrix A ∈ Rn×n,
its transpose is A>, [A]i is the i-th row of the matrix and
[A]ij represents the elements in the row i and column j.
A � 0 (A � 0) stands for positive definite (semidefinite)
matrix, instead > (≥) describes element wise inequality.
diag(A1, . . . , AN ) describes a block-diagonal matrix with
the matrices A1, . . . , AN on the main diagonal. The null
space of a matrix A is ker(A).

A set valued mapping F : Rn ⇒ Rn is (strictly) monotone
if ∀x, y ∈ Rn 〈F(x) − F(y), x − y〉 ≥ (>)0 holds true,
and maximally monotone if it does not exist a monotone
operator with a graph that strictly contains graph of F ,[19,
Def. 20.20]. The proofs are omitted due to space limitations.

II. PROBLEM FORMULATION

A. Mathematical formulation

We consider a set of N agents (players), involved in a
noncooperative game subject to coupling constraints. Each
player i ∈ N := {1, . . . , N} has a local decision vari-
able (strategy) xi that belongs to its private decision set
Ωi ⊆ Rni , the vector of all the strategies played is x :=
col(x1, . . . , xN ) ∈ Rn where n =

∑
i∈N ni, and x−i =

col(x1, . . . , xi−1, xi+1, . . . , xN ) are the decision variables of
all the players other than i. The aim of each agent i is to
minimize its local cost function fi(xi,x−i) : Ωi × Ω−i →
R, where Ω−i =

∏
i∈N\{i}Ωi ⊆ Rn−ni , that leads to

a coupling between players. In this work we assume the
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presence of affine constraints between the agent strategies.
These shape the collective feasible decision set

X := Ω ∩ {x ∈ Rn |Ax ≤ b} , (1)

where Ωi =
∏
i∈N Ωi, A ∈ Rm×n and b ∈ Rm. Then, the

feasible set of each agent i ∈ N reads as

Xi(x−i) :=
{
y ∈ Ωi |Aiy − bi ≤

∑
j∈N\{i}bj −Ajxj

}
,

where A = [A1, . . . , AN ], Ai ∈ Rm×ni and
∑N
j=1 bj = b.

We note that both the local decision set Ωi and how the
player i is involved in the coupling constraints, i.e. Ai and
bi, are private information, hence will not be accessible
to other agents. Assuming affine constraints is common in
the literature on noncooperative games [13], [5]. In the
following, we introduce some other common assumptions
over the aforementioned sets and cost function.

Standing Assumption 1 (Convex constraint sets): For
each player i ∈ N , the set Ωi is convex, nonempty and
compact, the feasible local set Xi(x−i) satisfies Slater’s
constraint qualification.

Standing Assumption 2 (Convex and diff. cost functions):
For all i ∈ N , the cost function fi is continuous, β-Lipschitz
continuous, continuously differentiable and convex in its
first argument.

In compact form, the game between players reads as

xi ∈ argmin
y∈Rn

fi(y,x−i) s.t. y ∈ Xi(x−i) . (2)

In this paper, we are interested in the generalized Nash
equilibia (GNE) of the game in (2).

Definition 1 (Generalized Nash equilibrium): A
collective strategy x∗ is a GNE if, for each player i,
it holds

x∗i ∈ argmin
y∈Rn

fi(y,x
∗
−i) s.t. y ∈ Xi(x∗−i) . (3)

B. Variational GNE

Let us introduce an interesting subset of GNE, the set of so
called variational GNE (v-GNE), or normalized equilibrium
point, of the game in (2) referring to the fact that all players
share a common penalty in order to meet the constraints -
see [14] and references therein. This set can be rephrased as
solutions of a variational inequality (VI), as in [6].

First, we define the pseudo-gradient mapping of the game
(2) as

F (x) = col ({∇xi
fi(xi,x−i)}i∈N ) , (4)

that gathers all the subdifferentials of the local cost functions
of the agents. The following are some standard technical
assumptions on F , see [15].

Standing Assumption 3: The pseudo-gradient F in (4) is
`-Lipschitz continuous and α-strongly monotone, for some
`, α > 0.

Standing Assumption 2 implies that F is a single valued
mapping, hence one can define VI(F,X) as the problem:

find x∗ ∈X, s.t. 〈F (x∗),x− x∗〉 ≥ 0 , ∀x ∈X . (5)

Next, let us define the KKT conditions associated to the game
in (2). Due to the convexity assumption, if x∗ is a solution
of (2), then there exist N dual variables λ∗i ∈ Rm≥0, ∀i ∈ N ,
such that the following inclusions are satisfied:{

0 ∈ ∇xifi(xi) +A>i λ
∗
i +NΩi(x

∗
i )

0 ∈ b−Ax∗ +NRm
≥0

(λ∗i )
, ∀i ∈ N . (6)

While in general the dual variables {λi}i∈N can be different,
here we focus on the subclass of equilibria sharing a common
dual variable, i.e., λ∗ = λ∗1 = · · · = λ∗N .

The KKT conditions for the VI(F,X) in (5) (see [6], [16])
read as{

0 ∈ ∇xifi(xi) +A>i λ
∗ +NΩi(x

∗
i )

0 ∈ b−Ax∗ +NRm
≥0

(λ∗)
, ∀i ∈ N . (7)

By (6) and (7), we deduce that every solution x∗ of VI(F,X)
is also a GNE of the game in (2), [6, Th. 3.1(i)]. In addition,
if the pair (x∗, λ∗) satisfies the KKT conditions in (7), then
x∗ and the vectors λ∗1 = · · · = λ∗N = λ∗ satisfy the KKT
conditions for the GNE, i.e. (6) [6, Th. 3.1(ii)].

Note that under Standing Assumptions 1–3 the
set of v-GNE is guaranteed to be a singleton [16,
Cor. 2.2.5; Th. 2.3.3].

III. SYNCHRONOUS DISTRIBUTED GNE SEEKING

In this section, we describe the Synchronous Distributed
GNE Seeking Algorithm with Node variables (SD-GENO).

A. Communication network
The communication between agents is described by an

undirected and connected graph G = (N , E) where N is the
set of players and E ⊆ N ×N is the set of edges. We define
|E| = M , and |N | = N . If an agent i shares information
with j, then (i, j) ∈ E , then we say that j belongs to the
neighbours of i, i.e., j ∈ Ni where Ni is the neighbourhood
of i. Let us label the edges el, for l ∈ {1, . . . ,M}. We
denote by E ∈ RM×N the incidence matrix, where [E]li
is equal to 1 (respectively −1) if el = (i, ·) (el = (·, i))
and 0 otherwise. By construction, E1N = 0N . Then, we
define Eout

i (respectively E in
i ) as the set of all the indexes

l of the edges el that start from (end in) node i, moreover
Ei = Eout

i ∪ E in
i . The node Laplacian L ∈ RN×N of an

undirected graph is a symmetric matrix and can be expressed
as L = E>E, [17, Lem. 8.3.2]. In the remainder of the
paper, we exploit the fact that the Laplacian matrix is such
that L1N = 0N and 1>NL = 0>N .

B. Algorithm design
Now, we present a distributed algorithm with convergence

guarantees to the unique v-GNE of the game in (2). The
KKT system in (6), can be cast in compact form as

0 ∈ F (x) + Λ>λ+NΩ(x)

0 ∈ b̄− Λx+NRmN
≥0

(λ)
, (8)
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where λ = col(λ1, . . . , λN ) ∈ RmN , Λ =
diag(A1, . . . , AN ) ∈ RmN×n and b̄ = col(b1, . . . , bN ) ∈
RmN . To enforce consensus among the dual variables,
hence obtain a v-GNE, we introduce the auxiliary variables
σl, l ∈ {1, . . . ,M}, one for every edge of the graph.
Defining σ = col(σ1, . . . , σM ) ∈ RmM and using
E = E ⊗ Im ∈ RmM×mN , the inclusions in (8) become

0 ∈ F (x) + Λ>λ+NΩ(x)

0 ∈ b̄− Λx+NRmN
≥0

(λ) +E>σ

0 ∈ −Eλ .
(9)

The variables {σl}l∈{1...M} are used to simplify the analysis,
but we will show how we decrease their number to one
for each node, increasing the scalability of the algorithm,
especially for dense networks.

From an operator theoretic perspective, a solution $∗ =
col(x∗,σ∗,λ∗) to (9) can be interpreted as a zero of the sum
of two operators, A and B, defined as

A : $ 7→

 0 0 Λ>

0 0 −E
−Λ E> 0

+

 NΩ(x)
0

NRmN
≥0

(λ)


B : $ 7→

F (x)
0
b̄

 .
(10)

In fact, $∗ ∈ zer(A+ B) if and only if $∗ satisfies (9).
Next, we show that the zeros of A + B are actually the

v-GNE of the initial game.
Proposition 1: Let A and B be as in (10). Then the

following hold:
(i) zer(A+ B) 6= ∅ ,

(ii) if col(x∗,σ∗,λ∗) ∈ zer(A+B) then (x∗, λ∗) satisfies
the KKT conditions in (7), hence x∗ is the v-GNE for
the game in (2).

The proof used an argument analogue to the one used in [5,
Th. 4.5] and the properties of the incidence matrix E.

The problem of finding the zeros of the sum of two mono-
tone operators is widely studied in literature and a plethora
of different splitting method can be used to iteratively solve
the problem [18], [19, Ch. 26]. A necessary first step is to
prove the monotonicity of the defined operators.

Lemma 1: The mappings A and B in (10) are maximally
monotone. Moreover, B is α

`2 -cocoercive.
The splitting method chosen here to find zer(A+ B) is the
preconditioned forward-backward splitting (PFB), which can
be applied thanks to the properties stated in Lemma 1. The
iteration of the algorithm takes the form of the so called
Krasnosel’skiĭ iteration, namely

$̃k = T$k

$k+1 = $k + η($̃k −$k)
(11)

where $k = col(xk,σk,λk), η > 0 and T is the PFB
splitting operator

T = JγΦ−1A ◦ (Id− γΦ−1B) , (12)

where γ > 0 is a step size. The so-called preconditioning
matrix Φ is defined as

Φ :=

τ−1 0 −Λ>

0 δ−1ImM E

−Λ E> ε−1

 (13)

where δ ∈ R>0, ε = diag(ε1, . . . , εN ) ⊗ Im with εi >
0, ∀i ∈ N and τ is defined in a similar way.

From (12), we note that fix(T ) = zer(A + B), indeed
$ ∈ fix(T ) ⇔ $ ∈ T$ ⇔ 0 ∈ Φ−1(A + B)$ ⇔ $ ∈
zer(A+B), [19, Th. 26.14]. Thus, the zero-finding problem
is translated into the fixed point problem for T in (12).

At this point, we calculate from (11) the explicit update
rules of the variables. We focus on the first part of the update,
i.e., $̃k = T$k. It can be rewritten as $̃k ∈ JγΦ−1A ◦ (Id−
γΦ−1B)$k ⇔ Φ($k − $̃k) ∈ A$̃k + B$k and finally

0 ∈ A$̃k + B$k + Φ($̃k −$k) , (14)

here $̃k := col(x̃k, σ̃k, λ̃
k
). For ease of notation, we drop

the time superscript k. By solving the first row block of (14),
i.e. 0 ∈ F (x) +NΩ(x̃) + τ−1(x̃− x) + Λ>λ, we obtain

x̃ = JNΩ
◦
(
x− τ (F (x) + Λ>λ)

)
. (15)

The third row block of (14) instead reads as 0 ∈ b̄ +
NRmN

≥0
(λ̃) + Λ(2x̃− x) +E>(2σ̃ − σ) + ε−1(λ̃− λ) that

leads to

λ̃ = JNRmN
≥0

◦
(
λ−ε(Λ(2x̃−x)− b̄−E>(2σ̃−σ))

)
. (16)

The second row block of (14) defines the simple update σ̃ =
σ+δEλ. We note that in the update (16) of λ̃, only E>σ is
used, hence an agent i needs only an aggregated information
over the edge variables {σl}l∈Ei , to update its state and the
dual variables. We exploit this property by replacing the edge
variables with z = E>σ ∈ RNm. In this way, the auxiliary
variables are one for each agent, instead of being one for
each edge. Using the property E>E = L ⊗ Im = L, we
cast the update rule of these new auxiliary variables as

z̃k = zk + δLλk

zk+1 = zk + η(z̃k − zk) .
(17)

By introducing z in (16), we then have

λ̃ = JNRmN
≥0

◦
(
λ+ ε(Λ(2x̃− x)− b̄− 2z̃ + z)

)
. (18)

The next statement shows that an equilibrium of the new
mapping is a v-GNE.

Theorem 1: If (x∗, z∗,λ∗) is a solution to the equations
(15), (17) and (18), with 1>z∗ = 0, then x∗ is a v-GNE.

Remark 1: The change of auxiliary variables, from σ to z,
is particularly useful in large non-so-sparse networks and it is
in general convenient when the number of edges higher than
the number of nodes. In fact, for dense networks, we have
one auxiliary variable for each player, hence the scalability
of the algorithm is preserved.
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Algorithm 1: SD-GENO

Input: k = 0, x0 ∈ Rn, λ0 ∈ RmN , z0 = 0mN , and
chose η, δ, ε, τ as in Theorem 2.

for i ∈ N do
x̃ki = projΩi

(
xki − τi(∇xi

fi(x
k
i ,x

k
−i) +A>i λ

k
i )
)

z̃ki = zki + δ
∑
j∈Ni

(λki − λkj )

λ̃ki = projRm
≥0

(
λki + εi

(
Ai(2x̃

k
i − xki )

−bi + zki − 2z̃ki
) )

xk+1
i = xki + η(x̃ki − xki )

zk+1
i = zki + η(z̃ki − zki )

λk+1
i = λki + η(λ̃ki − λki )
k ← k + 1

C. Synchronous, distributed algorithm with node variables
(SD-GENO)

We are now ready to state the update rules defining
the synchronous version of the proposed algorithm. The
update rule is obtained by gathering (15), (17), (18) and by
modifying the second part of (11) via the variables z:

x̃k = projΩ
(
xk − τ (F (xk) + Λ>λk)

)
z̃k = zk + δLλk

λ̃
k

= projRmN
≥0

(
λk + ε(Λ(2x̃k − xk)− b̄− 2z̃k + zk)

)
xk+1 = xk + η(x̃k − xk)

zk+1 = zk + η(z̃k − zk)

λk+1 = λk + η(λ̃
k
− λk) ,

(19)

See also Algorithm 1, for the local updates.
The x variable, generated by Algorithm 1, converges to the

v-GNE of the game in (2) in view of the following statement.

Theorem 2: Let ϑ > `2

2α , ε, δ, τ > 0 such that Φ−ϑI � 0

and η ∈ (0, 4αϑ−`2
2αϑ ). Then, Algorithm 1 converges to the v-

GNE of the game in (2).

IV. ASYNCHRONOUS DISTRIBUTED ALGORITHM

In this section, we present the main contribution of the
paper, the Asynchronous Distributed GNE Seeking Algorithm
with Node variables (AD-GENO), namely, the asynchronous
counterpart of Algorithm 1. We first define a preliminary
version of the algorithm using the edge auxiliary variables
σ, and then we derive the final formulation via the variable
z. To achieve an asynchronous update of the agent variables,
we adopt the “ARock” framework [10].

A. Algorithm design

We modify the update rule in (11) to describe the asyn-
chronism, in the local update of the agent i, as follows

$k+1 = $k + ηΥi(T$
k −$k) , (20)

where Υi is a real diagonal matrix of dimension n+ (N +
M)m, where the element [Υi]jj is 1 if the j-th element
of col(x, σ, λ) is an element of col(xi, {σl}l∈Eouti

, λi)
and 0 otherwise.We assume that the choice of which agent
performs the update at iteration k ∈ N≥0 is ruled by an i.i.d.
random variable ζk, that takes values in Υ := {Υi}i∈N .
Given a discrete probability distribution (p1, . . . , pN ), let
P[ζk = Υi] = pi, ∀i ∈ N . Therefore, we rephrase the
previous update rule as

$k+1 = $k + ηζk(T$k −$k) . (21)

We also consider the possibility of delayed information,
namely the update (21) can be performed with outdated
values of $k. We refer to [10, Sec. 1] for a more complete
overview on the topic. Due to the structure of the Υi, the
update of xi, λi and {σl}l∈Eouti

are performed at the same
moment, hence they share the same delay ϕki at k.

We denote the vector of possibly delayed information at
time k as $̂k, hence the reformulation of (21) reads as

$k+1 = $k + ηζk(T − Id)$̂k . (22)

We impose that the maximum delay is uniformly bounded.

Standing Assumption 4 (Bounded maximum delay): The
delays are uniformly upper bounded, i.e. there exists ϕ̄ > 0
such that supk∈N≥0

maxi∈N {ϕki } ≤ ϕ̄ < +∞.

From the computational perspective, we assume that each
player i has a public and a private memory. The first stores
the information obtained by the neighbours Ni. The private
is instead used during the update of i at time k and it is
an unchangeable copy of the public memory at iteration k.
The local update rules in Algorithm 2 are obtained similarly
to Sec. III-B for SD-GENO, hence by using the definition
of T . The obtained algorithm resembles ADAGNES in [11,
Alg. 1], therefore we name it E-ADAGNES.

The convergence of the update (22) can be derived by
relying on the theoretical results in [10] for the Krasnosel’skiĭ
asynchronous iteration.

Theorem 3: Let η ∈ (0, 4αϑ−`2
αϑ

cNpmin

4ϕ̄
√
pmin+1 ], where

pmin := min{pi}i∈N and c ∈ (0, 1). Then, the sequence
{xk}k∈N≥0

defined by Algorithm 2 converges to the v-GNE
of the game in (2) almost surely.

B. Asynchronous, distributed algorithm with node variables
(AD-GENO)

With Algorithm 2 as starting point, we show that the
change from auxiliary variables over the edges to variables
over the nodes does not affect the dynamics of the pair
(x,λ), thus preserving the convergence.

However, in this case, we need to introduce an extra
variable for each node i, i.e., µi ∈ Rm. This is an aggregate
information that groups all the changes of the neighbours
dual variables from the previous update of i to the present
iteration. We highlight that these variables are updated during
the writing phase of the neighbours, therefore they do not
require extra communications between the agents.
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Algorithm 2: E-ADAGNES

Input: k = 0, x0 ∈ Rn, λ0 ∈ RmN , σ0 = 0mM ,
chose η, δ, ε, τ as in Theorem 2.

Iteration k: Select the agent ik with probability
P(ζk = Υik) = pik

Reading: Agent ik copies in its private memory the

current values of the public memory, i.e. x
k−ϕk

j

j ,

λ
k−ϕk

j

j for j ∈ Nik and σk−ψ
k
l

l , ∀l ∈ Eik
Update:

x̃kik = projΩ
ik

(
x
k−ϕk

ik

ik
−

τik(∇x
ik
fik(x

k−ϕk

ik

ik
, x̂k−ik) +A>ikλ

k−ϕk

ik

ik
)
)

σ̃kl = σ
k−ϕk

ik

l + δ([E]l ⊗ Im)λ̂
k
, ∀l ∈ Eout

ik

λ̃kik = projRm
≥0

(
λ
k−ϕk

ik

ik
+ εik(Aik(2x̃kik − x

k−ϕk

ik

ik
)−

bik − ([E>]ik ⊗ Im)(2σ̃k − σ̂k))
)

xk+1
i = x

k−ϕk

ik

i + η(x̃ki − xki − ϕkik)

σk+1
l = σ

k−ϕk
ik

l + η(σ̃kl − σ
k−ψk

l

l ) , ∀l ∈ Eik
λk+1
i = λ

k−ϕk

ik

i + η(λ̃ki − λ
k−ϕk

ik

i )

Writing: Agent ik writes in the public memories of
j ∈ Nik the new values of xk+1

ik
, λk+1

ik
and

{σk+1
l }l∈Eout

ik

k ← k + 1

Remark 2: The need for µi ∈ Rm arises from the different
update frequency between {σl}l∈Ei and zi. Therefore, we
cannot characterize the dynamics of σ, if we define z =
E>σ only.

Algorithm 3 presents AD-GENO, where µi are rigorously
defined.

The convergence of AD-GENO is proven by the following
statement. Essentially, we show that introducing z does not
change the dynamics of (x,λ).

Theorem 4: Let η ∈ (0, 4αϑ−`2
αϑ

cNpmin

4ϕ̄
√
pmin+1 ] with pmin :=

min{pi}i∈N and c ∈ (0, 1). Then, the sequence {xk}k∈N≥0

defined by Algorithm 3 converges to the v-GNE of the game
in (2) almost surely.

V. ILLUSTRATIVE EXAMPLE

This section presents the implementation of AD-GENO to
solve a network Cournot game, that models the interaction
of N companies competing over m markets. The problem
is widely studied and we adopt a set-up similar to the one
in [20], [5]. We chose N = 8 companies, each operating 4
strategies, i.e., xi ∈ R4, ∀i ∈ N . It ranges in 0 ≤ xi ≤ Ωi,
where Ωi ∈ R4 and its elements are randomly drawn from
[10, 45]. The markets are m = 4, named A, B, C and
D. Two companies are neighbors if they share a market.
The constraint matrix is A = [A1, . . . , AN ] ∈ R4×32 and
the columns k of Ai have a nonzero element in position

Algorithm 3: AD-GENO

Input: k = 0, x0 ∈ Rn, λ0 ∈ RmN , z0 = 0mN ,
chose η, δ, ε, τ as in Theorem 2. For all i ∈ N and
µi = 0m.

Iteration k: Select the agent ik with probability
P[ζk = Υik ] = pik

Reading: Agent ik copies in its private memory the

actual values of the public memory, i.e. x
k−ϕk

j

j ,

λ
k−ϕk

j

j , z
k−ϕk

j

j for j ∈ Nik and µi. Reset the public
values of µi to 0m.

Update:

x̃kik = projΩ
ik

(
x
k−ϕk

ik

ik
−

τik(∇x
ik
fik(x

k−ϕk

ik

ik
, x̂k−ik) +A>ikλ

k−ϕk

ik

ik
)
)

z̃kik = z
k−ϕk

i

ik
+ δηµik

λ̃kik = projRm
≥0

(
λ
k−ϕk

ik

ik
+ εik(Aik(2x̃kik − x

k−ϕk

ik

ik
) −

bik − z̃
k−ϕk

i

ik
−2δ

∑
j∈Ni\{i}(λ

k−ϕk

ik

ik
− λk−ϕ

k
j

j )

)
xk+1
i = x

k−ϕk

ik

ik
+ η(x̃kik − x

k−ϕk

ik

ik
)

zk+1
ik

= z̃kik + ηδ
∑
l∈Eoutik

([E]l ⊗ Im)λ̂
k

λk+1
ik

= λ
k−ϕk

ik

ik
+ η(λ̃kik − λ

k−ϕk

ik

ik
)

Writing: Agent ik writes in the public memories of
j ∈ Nik the new values of xk+1

ik
and λk+1

ik
, for

j ∈ Nik \ {ik} the player ik also overwrites µj as

µj ← µj + λ
k−ϕk

j

j − λk−ϕ
k

ik

i

k ← k + 1

j if the k-th strategy of player i is applied to market j.
The nonzero values are randomly chosen from [0.6, 1]. The
elements of b ∈ R4 are the markets’ maximal capacities and
are randomly chosen from [20, 100]. The arising inequality
coupling constraint is Ax ≤ b. The local cost function is
fi(xi,x−i) = ci(x) − P (x)>Aixi, where ci(x) is the cost
of playing a certain strategy and P (x) the price obtained by
the market. We define the markets price as a linear function
P (x) = P̄ − DAx, where P̄ ∈ R4 and D ∈ R4×4 is a
diagonal matrix, the values of their elements are randomly
chosen respectively from [250, 500] and [1, 5]. The cost
function is quadratic ci(x) = x>i Qixi + q>i xi, where the
elements of the diagonal matrix Qi ∈ R4×4 and the vector
qi ∈ R4 are randomly drawn respectively from [1, 8] and
[1, 4]. We propose two setups, the case of communication
over a ring graph with alphabetic order and the case of
random communication (in Figure 1, respectively the blue
and red trajectories). In the latter, we only ensure that every
20N iterations all the agents performed a similar number
of updates. The edges of the graph are arbitrarily oriented.
We assume that the agents update with uniform probability,
i.e., P [ζk = Υi] = 1

N . The step sizes δ, ε, τ in AD-GENO
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(a)

(b)

(c)

Fig. 1: Communication in alphabetic order (blue) versus
random communication (red): (a) Normalized distance from
equilibrium, (b) Norm of the disagreement vector, (c) Aver-
aged constraints violation (the negative values are omitted).

are randomly chosen, the first from [0.5, 0.2] and the others
from [0.5, 0.03], in order to ensure Φ � 0 and η = 0.35. The
maximum delay is assumed ϕ̄ = 4, therefore $̂k in (22) is
$̂k = col($̂k

1 , . . . , $̂
k
N ) where each $̂k

i is randomly chosen
from {$̂k−ϕ̄

i , . . . , $̂k
i }.

The results of the simulations are shown in Figure 1. In
particular, Figure 1a presents the convergence of the collec-
tive strategy xk to the v-GNE x∗. Furthermore, Figure 1b
highlights the convergence of the Lagrangian multipliers to
consensus. We noticed that a simple update sequence, as the
alphabetically ordered one, leads to a faster convergence than
a random one. In general, the more the agents’ updates are
well mixed the faster the algorithm converge.

VI. CONCLUSION

This work propose a variant of the forward-backward split-
ting algorithm to solve generalized Nash equilibrium prob-
lems via asynchronous and distributed information exchange,
that is robust to communication delays. A change of variables
based on the node Laplacian matrix of the information-
exchange graph allows one to preserve the scalability of the

solution algorithm in the number of nodes (as opposed to the
number of edges). A theoretical and numerical comparison
between the proposed algorithm and that in [11] is left as
future work.
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