353 research outputs found

    ICT architectures for TSO-DSO coordination and data exchange: a European perspective

    Get PDF
    The coordination between system operators is a key element for the decarbonization of the power system. Over the past few years, many EU-funded research projects have addressed the challenges of Transmission System Operators (TSO) and Distribution System Operators (DSO) coordination by implementing different data exchange architectures. This paper presents a review of the ICT architectures implemented for the main coordination schemes demonstrated in such projects. The main used technologies are analyzed, considering the type of data exchanged and the communication link. Finally, the paper presents the different gaps and challenges on TSO-DSO coordination related to ICT architectures that must still be faced, paying especial attention to the expected contribution of the EU-funded OneNet project on this topic. IEEECoordiNet H202

    Average Consensus in the Presence of Delays and Dynamically Changing Directed Graph Topologies

    Full text link
    Classical approaches for asymptotic convergence to the global average in a distributed fashion typically assume timely and reliable exchange of information between neighboring components of a given multi-component system. These assumptions are not necessarily valid in practical settings due to varying delays that might affect transmissions at different times, as well as possible changes in the underlying interconnection topology (e.g., due to component mobility). In this work, we propose protocols to overcome these limitations. We first consider a fixed interconnection topology (captured by a - possibly directed - graph) and propose a discrete-time protocol that can reach asymptotic average consensus in a distributed fashion, despite the presence of arbitrary (but bounded) delays in the communication links. The protocol requires that each component has knowledge of the number of its outgoing links (i.e., the number of components to which it sends information). We subsequently extend the protocol to also handle changes in the underlying interconnection topology and describe a variety of rather loose conditions under which the modified protocol allows the components to reach asymptotic average consensus. The proposed algorithms are illustrated via examples.Comment: 37 page

    Energy Management Systems For Smart Active Residential Buildings

    Get PDF

    Average Consensus in the Presence of Delays in Directed Graph Topologies

    Full text link

    Implementation Profile: EGoT DERMS Server/Client System (DOE-PSU-0000922-2)

    Get PDF
    This implementation profile (IP) provides the scope and requirements necessary to implement a distributed energy resource management system (DERMS), which networks large numbers of DER within an energy grid of things (EGoT). This document originated as part of a U.S. DOE-funded project to develop a DERMS based on a set of rules known as the Energy Services Interface (ESI). The ESI serves as an umbrella, ensuring the information exchange between an aggregator and DER owners conforms to expectations: protect privacy, provide security, develop trustworthiness, and ensure interoperability. DERMS developers use the ESI to ensure that information exchange meets these expectations. This IP demonstrates how that was done using IEEE 2030.5 as the messaging protocol

    Finite time protocols for multi-agent control of Distributed Generation and Responsive Loads

    Full text link

    Distributed Software Development Tools for Distributed Scientific Applications

    Get PDF
    This chapter provides a new methodology and two tools for userā€driven Wikinomicsā€oriented scientific applicationsā€™ development. Serviceā€oriented architecture for such applications is used, where the entire research supporting computing or simulating process is broken down into a set of loosely coupled stages in the form of interoperating replaceable Web services that can be distributed over different clouds. Any piece of the code and any application component deployed on a system can be reused and transformed into a service. The combination of serviceā€oriented and cloud computing will indeed begin to challenge the way of research supporting computing development, the facilities of which are considered in this chapter

    Consensus with Linear Objective Maps

    Full text link
    A consensus system is a linear multi-agent system in which agents communicate to reach a so-called consensus state, defined as the average of the initial states of the agents. Consider a more generalized situation in which each agent is given a positive weight and the consensus state is defined as the weighted average of the initial conditions. We characterize in this paper the weighted averages that can be evaluated in a decentralized way by agents communicating over a directed graph. Specifically, we introduce a linear function, called the objective map, that defines the desired final state as a function of the initial states of the agents. We then provide a complete answer to the question of whether there is a decentralized consensus dynamics over a given digraph which converges to the final state specified by an objective map. In particular, we characterize not only the set of objective maps that are feasible for a given digraph, but also the consensus dynamics that implements the objective map. In addition, we present a decentralized algorithm to design the consensus dynamics
    • ā€¦
    corecore