832 research outputs found

    Parallel Bayesian Optimization Using Satisficing Thompson Sampling for Time-Sensitive Black-Box Optimization

    Full text link
    Bayesian optimization (BO) is widely used for black-box optimization problems, and have been shown to perform well in various real-world tasks. However, most of the existing BO methods aim to learn the optimal solution, which may become infeasible when the parameter space is extremely large or the problem is time-sensitive. In these contexts, switching to a satisficing solution that requires less information can result in better performance. In this work, we focus on time-sensitive black-box optimization problems and propose satisficing Thompson sampling-based parallel Bayesian optimization (STS-PBO) approaches, including synchronous and asynchronous versions. We shift the target from an optimal solution to a satisficing solution that is easier to learn. The rate-distortion theory is introduced to construct a loss function that balances the amount of information that needs to be learned with sub-optimality, and the Blahut-Arimoto algorithm is adopted to compute the target solution that reaches the minimum information rate under the distortion limit at each step. Both discounted and undiscounted Bayesian cumulative regret bounds are theoretically derived for the proposed STS-PBO approaches. The effectiveness of the proposed methods is demonstrated on a fast-charging design problem of Lithium-ion batteries. The results are accordant with theoretical analyses, and show that our STS-PBO methods outperform both sequential counterparts and parallel BO with traditional Thompson sampling in both synchronous and asynchronous settings

    ϵ-shotgun: ϵ-greedy batch bayesian optimisation

    Get PDF
    Bayesian optimisation is a popular surrogate model-based approach for optimising expensive black-box functions. Given a surrogate model, the next location to expensively evaluate is chosen via maximisation of a cheap-to-query acquisition function. We present an ϵ-greedy procedure for Bayesian optimisation in batch settings in which the black-box function can be evaluated multiple times in parallel. Our ϵ-shotgun algorithm leverages the model's prediction, uncertainty, and the approximated rate of change of the landscape to determine the spread of batch solutions to be distributed around a putative location. The initial target location is selected either in an exploitative fashion on the mean prediction, or - with probability ϵ - from elsewhere in the design space. This results in locations that are more densely sampled in regions where the function is changing rapidly and in locations predicted to be good (i.e. close to predicted optima), with more scattered samples in regions where the function is flatter and/or of poorer quality. We empirically evaluate the ϵ-shotgun methods on a range of synthetic functions and two real-world problems, finding that they perform at least as well as state-of-the-art batch methods and in many cases exceed their performance

    Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian Optimization

    Get PDF
    Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behavior, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance
    corecore