6 research outputs found

    Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only Neighborhood Information

    Full text link
    We consider ad-hoc networks consisting of nn wireless nodes that are located on the plane. Any two given nodes are called neighbors if they are located within a certain distance (communication range) from one another. A given node can be directly connected to any one of its neighbors and picks its connections according to a unique topology control algorithm that is available at every node. Given that each node knows only the indices (unique identification numbers) of its one- and two-hop neighbors, we identify an algorithm that preserves connectivity and can operate without the need of any synchronization among nodes. Moreover, the algorithm results in a sparse graph with at most 5n5n edges and a maximum node degree of 1010. Existing algorithms with the same promises further require neighbor distance and/or direction information at each node. We also evaluate the performance of our algorithm for random networks. In this case, our algorithm provides an asymptotically connected network with n(1+o(1))n(1+o(1)) edges with a degree less than or equal to 66 for 1βˆ’o(1)1-o(1) fraction of the nodes. We also introduce another asynchronous connectivity-preserving algorithm that can provide an upper bound as well as a lower bound on node degrees.Comment: To appear in IEEE Transactions on Communication

    Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only Neighborhood Information

    No full text

    Energy-Efficient Node Deployment in Static and Mobile Heterogeneous Multi-Hop Wireless Sensor Networks

    Full text link
    We study a heterogeneous wireless sensor network (WSN) where N heterogeneous access points (APs) gather data from densely deployed sensors and transmit their sensed information to M heterogeneous fusion centers (FCs) via multi-hop wireless communication. This heterogeneous node deployment problem is modeled as an optimization problem with total wireless communication power consumption of the network as its objective function. We consider both static WSNs, where nodes retain their deployed position, and mobile WSNs where nodes can move from their initial deployment to their optimal locations. Based on the derived necessary conditions for the optimal node deployment in static WSNs, we propose an iterative algorithm to deploy nodes. In addition, we study the necessary conditions of the optimal movement-efficient node deployment in mobile WSNs with constrained movement energy, and present iterative algorithms to find such deployments, accordingly. Simulation results show that our proposed node deployment algorithms outperform the existing methods in the literature, and achieves a lower total wireless communication power in both static and mobile WSNs, on average
    corecore