3,691 research outputs found

    SOTER: A Runtime Assurance Framework for Programming Safe Robotics Systems

    Full text link
    The recent drive towards achieving greater autonomy and intelligence in robotics has led to high levels of complexity. Autonomous robots increasingly depend on third party off-the-shelf components and complex machine-learning techniques. This trend makes it challenging to provide strong design-time certification of correct operation. To address these challenges, we present SOTER, a robotics programming framework with two key components: (1) a programming language for implementing and testing high-level reactive robotics software and (2) an integrated runtime assurance (RTA) system that helps enable the use of uncertified components, while still providing safety guarantees. SOTER provides language primitives to declaratively construct a RTA module consisting of an advanced, high-performance controller (uncertified), a safe, lower-performance controller (certified), and the desired safety specification. The framework provides a formal guarantee that a well-formed RTA module always satisfies the safety specification, without completely sacrificing performance by using higher performance uncertified components whenever safe. SOTER allows the complex robotics software stack to be constructed as a composition of RTA modules, where each uncertified component is protected using a RTA module. To demonstrate the efficacy of our framework, we consider a real-world case-study of building a safe drone surveillance system. Our experiments both in simulation and on actual drones show that the SOTER-enabled RTA ensures the safety of the system, including when untrusted third-party components have bugs or deviate from the desired behavior

    Beyond Reynolds: A Constraint-Driven Approach to Cluster Flocking

    Full text link
    In this paper, we present an original set of flocking rules using an ecologically-inspired paradigm for control of multi-robot systems. We translate these rules into a constraint-driven optimal control problem where the agents minimize energy consumption subject to safety and task constraints. We prove several properties about the feasible space of the optimal control problem and show that velocity consensus is an optimal solution. We also motivate the inclusion of slack variables in constraint-driven problems when the global state is only partially observable by each agent. Finally, we analyze the case where the communication topology is fixed and connected, and prove that our proposed flocking rules achieve velocity consensus.Comment: 6 page

    Synthesis of Switching Protocols from Temporal Logic Specifications

    Get PDF
    We propose formal means for synthesizing switching protocols that determine the sequence in which the modes of a switched system are activated to satisfy certain high-level specifications in linear temporal logic. The synthesized protocols are robust against exogenous disturbances on the continuous dynamics. Two types of finite transition systems, namely under- and over-approximations, that abstract the behavior of the underlying continuous dynamics are defined. In particular, we show that the discrete synthesis problem for an under-approximation can be formulated as a model checking problem, whereas that for an over-approximation can be transformed into a two-player game. Both of these formulations are amenable to efficient, off-the-shelf software tools. By construction, existence of a discrete switching strategy for the discrete synthesis problem guarantees the existence of a continuous switching protocol for the continuous synthesis problem, which can be implemented at the continuous level to ensure the correctness of the nonlinear switched system. Moreover, the proposed framework can be straightforwardly extended to accommodate specifications that require reacting to possibly adversarial external events. Finally, these results are illustrated using three examples from different application domains

    Coordination of Multirobot Systems Under Temporal Constraints

    Full text link
    Multirobot systems have great potential to change our lives by increasing efficiency or decreasing costs in many applications, ranging from warehouse logistics to construction. They can also replace humans in dangerous scenarios, for example in a nuclear disaster cleanup mission. However, teleoperating robots in these scenarios would severely limit their capabilities due to communication and reaction delays. Furthermore, ensuring that the overall behavior of the system is safe and correct for a large number of robots is challenging without a principled solution approach. Ideally, multirobot systems should be able to plan and execute autonomously. Moreover, these systems should be robust to certain external factors, such as failing robots and synchronization errors and be able to scale to large numbers, as the effectiveness of particular tasks might depend directly on these criteria. This thesis introduces methods to achieve safe and correct autonomous behavior for multirobot systems. Firstly, we introduce a novel logic family, called counting logics, to describe the high-level behavior of multirobot systems. Counting logics capture constraints that arise naturally in many applications where the identity of the robot is not important for the task to be completed. We further introduce a notion of robust satisfaction to analyze the effects of synchronization errors on the overall behavior and provide complexity analysis for a fragment of this logic. Secondly, we propose an optimization-based algorithm to generate a collection of robot paths to satisfy the specifications given in counting logics. We assume that the robots are perfectly synchronized and use a mixed-integer linear programming formulation to take advantage of the recent advances in this field. We show that this approach is complete under the perfect synchronization assumption. Furthermore, we propose alternative encodings that render more efficient solutions under certain conditions. We also provide numerical results that showcase the scalability of our approach, showing that it scales to hundreds of robots. Thirdly, we relax the perfect synchronization assumption and show how to generate paths that are robust to bounded synchronization errors, without requiring run-time communication. However, the complexity of such an approach is shown to depend on the error bound, which might be limiting. To overcome this issue, we propose a hierarchical method whose complexity does not depend on this bound. We show that, under mild conditions, solutions generated by the hierarchical method can be executed safely, even if such a bound is not known. Finally, we propose a distributed algorithm to execute multirobot paths while avoiding collisions and deadlocks that might occur due to synchronization errors. We recast this problem as a conflict resolution problem and characterize conditions under which existing solutions to the well-known drinking philosophers problem can be used to design control policies that prevents collisions and deadlocks. We further provide improvements to this naive approach to increase the amount of concurrency in the system. We demonstrate the effectiveness of our approach by comparing it to the naive approach and to the state-of-the-art.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162921/1/ysahin_1.pd

    A Method for Multi-Robot Asynchronous Trajectory Execution in MoveIt2

    Full text link
    This work presents an extension to the MoveIt2 planning library supporting asynchronous execution for multi-robot / multi-arm robotic setups. The proposed method introduces a unified way for the execution of both synchronous and asynchronous trajectories by implementing a simple scheduler and guarantees collision-free operation by continuous collision checking while the robots are moving.Comment: Accepted to the "IROS 2023 Workshop on Task and Motion Planning: from Theory to Practice" -- https://dyalab.mines.edu/2023/iros-workshop

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Certified Reinforcement Learning with Logic Guidance

    Full text link
    This paper proposes the first model-free Reinforcement Learning (RL) framework to synthesise policies for unknown, and continuous-state Markov Decision Processes (MDPs), such that a given linear temporal property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), namely a finite-state machine expressing the property. Exploiting the structure of the LDBA, we shape a synchronous reward function on-the-fly, so that an RL algorithm can synthesise a policy resulting in traces that probabilistically satisfy the linear temporal property. This probability (certificate) is also calculated in parallel with policy learning when the state space of the MDP is finite: as such, the RL algorithm produces a policy that is certified with respect to the property. Under the assumption of finite state space, theoretical guarantees are provided on the convergence of the RL algorithm to an optimal policy, maximising the above probability. We also show that our method produces ''best available'' control policies when the logical property cannot be satisfied. In the general case of a continuous state space, we propose a neural network architecture for RL and we empirically show that the algorithm finds satisfying policies, if there exist such policies. The performance of the proposed framework is evaluated via a set of numerical examples and benchmarks, where we observe an improvement of one order of magnitude in the number of iterations required for the policy synthesis, compared to existing approaches whenever available.Comment: This article draws from arXiv:1801.08099, arXiv:1809.0782
    corecore