37,004 research outputs found

    Computing Web-scale Topic Models using an Asynchronous Parameter Server

    Full text link
    Topic models such as Latent Dirichlet Allocation (LDA) have been widely used in information retrieval for tasks ranging from smoothing and feedback methods to tools for exploratory search and discovery. However, classical methods for inferring topic models do not scale up to the massive size of today's publicly available Web-scale data sets. The state-of-the-art approaches rely on custom strategies, implementations and hardware to facilitate their asynchronous, communication-intensive workloads. We present APS-LDA, which integrates state-of-the-art topic modeling with cluster computing frameworks such as Spark using a novel asynchronous parameter server. Advantages of this integration include convenient usage of existing data processing pipelines and eliminating the need for disk writes as data can be kept in memory from start to finish. Our goal is not to outperform highly customized implementations, but to propose a general high-performance topic modeling framework that can easily be used in today's data processing pipelines. We compare APS-LDA to the existing Spark LDA implementations and show that our system can, on a 480-core cluster, process up to 135 times more data and 10 times more topics without sacrificing model quality.Comment: To appear in SIGIR 201

    A Scalable Asynchronous Distributed Algorithm for Topic Modeling

    Full text link
    Learning meaningful topic models with massive document collections which contain millions of documents and billions of tokens is challenging because of two reasons: First, one needs to deal with a large number of topics (typically in the order of thousands). Second, one needs a scalable and efficient way of distributing the computation across multiple machines. In this paper we present a novel algorithm F+Nomad LDA which simultaneously tackles both these problems. In order to handle large number of topics we use an appropriately modified Fenwick tree. This data structure allows us to sample from a multinomial distribution over TT items in O(logT)O(\log T) time. Moreover, when topic counts change the data structure can be updated in O(logT)O(\log T) time. In order to distribute the computation across multiple processor we present a novel asynchronous framework inspired by the Nomad algorithm of \cite{YunYuHsietal13}. We show that F+Nomad LDA significantly outperform state-of-the-art on massive problems which involve millions of documents, billions of words, and thousands of topics

    Memory-Efficient Topic Modeling

    Full text link
    As one of the simplest probabilistic topic modeling techniques, latent Dirichlet allocation (LDA) has found many important applications in text mining, computer vision and computational biology. Recent training algorithms for LDA can be interpreted within a unified message passing framework. However, message passing requires storing previous messages with a large amount of memory space, increasing linearly with the number of documents or the number of topics. Therefore, the high memory usage is often a major problem for topic modeling of massive corpora containing a large number of topics. To reduce the space complexity, we propose a novel algorithm without storing previous messages for training LDA: tiny belief propagation (TBP). The basic idea of TBP relates the message passing algorithms with the non-negative matrix factorization (NMF) algorithms, which absorb the message updating into the message passing process, and thus avoid storing previous messages. Experimental results on four large data sets confirm that TBP performs comparably well or even better than current state-of-the-art training algorithms for LDA but with a much less memory consumption. TBP can do topic modeling when massive corpora cannot fit in the computer memory, for example, extracting thematic topics from 7 GB PUBMED corpora on a common desktop computer with 2GB memory.Comment: 20 pages, 7 figure

    Streaming, Distributed Variational Inference for Bayesian Nonparametrics

    Full text link
    This paper presents a methodology for creating streaming, distributed inference algorithms for Bayesian nonparametric (BNP) models. In the proposed framework, processing nodes receive a sequence of data minibatches, compute a variational posterior for each, and make asynchronous streaming updates to a central model. In contrast to previous algorithms, the proposed framework is truly streaming, distributed, asynchronous, learning-rate-free, and truncation-free. The key challenge in developing the framework, arising from the fact that BNP models do not impose an inherent ordering on their components, is finding the correspondence between minibatch and central BNP posterior components before performing each update. To address this, the paper develops a combinatorial optimization problem over component correspondences, and provides an efficient solution technique. The paper concludes with an application of the methodology to the DP mixture model, with experimental results demonstrating its practical scalability and performance.Comment: This paper was presented at NIPS 2015. Please use the following BibTeX citation: @inproceedings{Campbell15_NIPS, Author = {Trevor Campbell and Julian Straub and John W. {Fisher III} and Jonathan P. How}, Title = {Streaming, Distributed Variational Inference for Bayesian Nonparametrics}, Booktitle = {Advances in Neural Information Processing Systems (NIPS)}, Year = {2015}
    corecore