10 research outputs found

    Physical-layer Network Coding: A Random Coding Error Exponent Perspective

    Full text link
    In this work, we derive the random coding error exponent for the uplink phase of a two-way relay system where physical layer network coding (PNC) is employed. The error exponent is derived for the practical (yet sub-optimum) XOR channel decoding setting. We show that the random coding error exponent under optimum (i.e., maximum likelihood) PNC channel decoding can be achieved even under the sub-optimal XOR channel decoding. The derived achievability bounds provide us with valuable insight and can be used as a benchmark for the performance of practical channel-coded PNC systems employing low complexity decoders when finite-length codewords are used.Comment: Submitted to IEEE International Symposium on Information Theory (ISIT), 201

    Implementation of uplink network-coded modulation for two-hop networks

    Get PDF
    With the fast growing number of wireless devices and demand of user data, the backhaul load becomes a bottleneck in wireless networks. Physical layer network coding (PNC) allows Access Points (APs) to relay compressed, network coded user data, therefore reducing the backhaul traffic. In this paper, an implementation of uplink Network Coded Modulation (NetCoM) with PNC is presented. A 5-node prototype NetCoM system is established using Universal Software Radio Peripherals (USRPs) and a practical PNC scheme designed for binary systems is utilised. An orthogonal frequency division multiplexing (OFDM) waveform implementation and the practical challenges (e.g. device synchronisation and clock drift) of applying OFDM to NetCoM are discussed. To the best of our knowledge this is the first PNC implementation in an uplink scenario in radio access networks and our prototype provides an industrially-applicable implementation of the proposed NetCoM with PNC approach

    PNC Enabled IIoT: A General Framework for Channel-Coded Asymmetric Physical-Layer Network Coding

    Full text link
    This paper investigates the application of physical-layer network coding (PNC) to Industrial Internet-of-Things (IIoT) where a controller and a robot are out of each other's transmission range, and they exchange messages with the assistance of a relay. We particularly focus on a scenario where the controller has more transmitted information, and the channel of the controller is stronger than that of the robot. To reduce the communication latency, we propose an asymmetric transmission scheme where the controller and robot transmit different amount of information in the uplink of PNC simultaneously. To achieve this, the controller chooses a higher order modulation. In addition, the both users apply channel codes to guarantee the reliability. A problem is a superimposed symbol at the relay contains different amount of source information from the two end users. It is thus hard for the relay to deduce meaningful network-coded messages by applying the current PNC decoding techniques which require the end users to transmit the same amount of information. To solve this problem, we propose a lattice-based scheme where the two users encode-and-modulate their information in lattices with different lattice construction levels. Our design is versatile on that the two end users can freely choose their modulation orders based on their channel power, and the design is applicable for arbitrary channel codes.Comment: Submitted to IEEE for possible publicatio

    Iterative decoding combined with physical-layer network coding on impulsive noise channels

    Get PDF
    PhD ThesisThis thesis investigates the performance of a two-way wireless relay channel (TWRC) employing physical layer network coding (PNC) combined with binary and non-binary error-correcting codes on additive impulsive noise channels. This is a research topic that has received little attention in the research community, but promises to offer very interesting results as well as improved performance over other schemes. The binary channel coding schemes include convolutional codes, turbo codes and trellis bitinterleaved coded modulation with iterative decoding (BICM-ID). Convolutional codes and turbo codes defined in finite fields are also covered due to non-binary channel coding schemes, which is a sparse research area. The impulsive noise channel is based on the well-known Gaussian Mixture Model, which has a mixture constant denoted by α. The performance of PNC combined with the different coding schemes are evaluated with simulation results and verified through the derivation of union bounds for the theoretical bit-error rate (BER). The analyses of the binary iterative codes are presented in the form of extrinsic information transfer (ExIT) charts, which show the behaviour of the iterative decoding algorithms at the relay of a TWRC employing PNC and also the signal-to-noise ratios (SNRs) when the performance converges. It is observed that the non-binary coding schemes outperform the binary coding schemes at low SNRs and then converge at higher SNRs. The coding gain at low SNRs become more significant as the level of impulsiveness increases. It is also observed that the error floor due to the impulsive noise is consistently lower for non-binary codes. There is still great scope for further research into non-binary codes and PNC on different channels, but the results in this thesis have shown that these codes can achieve significant coding gains over binary codes for wireless networks employing PNC, particularly when the channels are harsh

    Physical-Layer Cooperation in Coded OFDM Relaying Systems

    Get PDF
    Mobile communication systems nowadays require ever-increasing data rate and coverage of wide areas. One promising approach to achieve this goal is the application of cooperative communications enabled by introducing intermediate nodes known as relays to support the transmission between terminals. By processing and forwarding the receive message at the relays, the path-loss effect between the source and the destination is mitigated. One major limit factor for relay assisted communications is that a relay cannot transmit and receive using the same physical resources. Therefore, a half-duplex constraint is commonly assumed resulting in halved spectral efficiency. To combat this drawback, two-way relaying is introduced, where two sources exchange information with each. On the other hand, due to the physical limitation of the relays, e.g., wireless sensor nodes, it's not possible to implement multiple antennas at one relay, which prohibits the application of multiple-input multiple-output (MIMO) techniques. However, when treating multiple relays as a cluster, a virtual antenna array is formed to perform MIMO techniques in a distributed manner. %This thesis aims at designing efficient one-way and two-way relaying schemes. Specifically, existing schemes from the literature are improved and new schemes are developed with the emphasis on coded orthogonal frequency division multiplexing (OFDM) transmissions. Of special interest is the application of physical-layer network coding (PLNC) for two-phase two-way relaying. In this case, a network coded message is estimated from the superimposed receive signal at the relay using PLNC schemes. The schemes are investigated based on a mutual information analysis and their performance are improved by a newly proposed phase control strategy. Furthermore, performance degradation due to system asynchrony is mitigated depending on different PLNC schemes. When multiple relays are available, novel cooperation schemes allowing information exchange within the relay cluster are proposed that facilitate distributed MIMO reception and transmission. Additionally, smart signaling approaches are presented to enable the cooperation at different levels with the cooperation overhead taken into account adequately in system performance evaluation
    corecore