183 research outputs found

    Distributed Stochastic Optimization of the Regularized Risk

    Full text link
    Many machine learning algorithms minimize a regularized risk, and stochastic optimization is widely used for this task. When working with massive data, it is desirable to perform stochastic optimization in parallel. Unfortunately, many existing stochastic optimization algorithms cannot be parallelized efficiently. In this paper we show that one can rewrite the regularized risk minimization problem as an equivalent saddle-point problem, and propose an efficient distributed stochastic optimization (DSO) algorithm. We prove the algorithm's rate of convergence; remarkably, our analysis shows that the algorithm scales almost linearly with the number of processors. We also verify with empirical evaluations that the proposed algorithm is competitive with other parallel, general purpose stochastic and batch optimization algorithms for regularized risk minimization

    Decomposition Algorithms for Stochastic Programming on a Computational Grid

    Get PDF
    We describe algorithms for two-stage stochastic linear programming with recourse and their implementation on a grid computing platform. In particular, we examine serial and asynchronous versions of the L-shaped method and a trust-region method. The parallel platform of choice is the dynamic, heterogeneous, opportunistic platform provided by the Condor system. The algorithms are of master-worker type (with the workers being used to solve second-stage problems, and the MW runtime support library (which supports master-worker computations) is key to the implementation. Computational results are presented on large sample average approximations of problems from the literature.Comment: 44 page

    One-Class Conditional Random Fields for Sequential Anomaly Detection

    Get PDF
    Sequential anomaly detection is a challenging problem due to the one-class nature of the data (i.e., data is collected from only one class) and the temporal dependence in sequential data. We present One-Class Conditional Random Fields (OCCRF) for sequential anomaly detection that learn from a one-class dataset and capture the temporal dependence structure, in an unsupervised fashion. We propose a hinge loss in a regularized risk minimization framework that maximizes the margin between each sequence being classified as "normal" and "abnormal." This allows our model to accept most (but not all) of the training data as normal, yet keeps the solution space tight. Experimental results on a number of real-world datasets show our model outperforming several baselines. We also report an exploratory study on detecting abnormal organizational behavior in enterprise social networks.United States. Defense Advanced Research Projects Agency (W911NF-12-C-0028)United States. Office of Naval Research (N000140910625)National Science Foundation (U.S.) (IIS-1018055

    Convex Optimization for Big Data

    Get PDF
    This article reviews recent advances in convex optimization algorithms for Big Data, which aim to reduce the computational, storage, and communications bottlenecks. We provide an overview of this emerging field, describe contemporary approximation techniques like first-order methods and randomization for scalability, and survey the important role of parallel and distributed computation. The new Big Data algorithms are based on surprisingly simple principles and attain staggering accelerations even on classical problems.Comment: 23 pages, 4 figurs, 8 algorithm

    Efficient Stochastic Programming in Julia

    Full text link
    We present StochasticPrograms.jl, a user-friendly and powerful open-source framework for stochastic programming written in the Julia language. The framework includes both modeling tools and structure-exploiting optimization algorithms. Stochastic programming models can be efficiently formulated using expressive syntax and models can be instantiated, inspected, and analyzed interactively. The framework scales seamlessly to distributed environments. Small instances of a model can be run locally to ensure correctness, while larger instances are automatically distributed in a memory-efficient way onto supercomputers or clouds and solved using parallel optimization algorithms. These structure-exploiting solvers are based on variations of the classical L-shaped and progressive-hedging algorithms. We provide a concise mathematical background for the various tools and constructs available in the framework, along with code listings exemplifying their usage. Both software innovations related to the implementation of the framework and algorithmic innovations related to the structured solvers are highlighted. We conclude by demonstrating strong scaling properties of the distributed algorithms on numerical benchmarks in a multi-node setup

    Incremental proximal methods for large scale convex optimization

    Get PDF
    Laboratory for Information and Decision Systems Report LIDS-P-2847We consider the minimization of a sum∑m [over]i=1 fi (x) consisting of a large number of convex component functions fi . For this problem, incremental methods consisting of gradient or subgradient iterations applied to single components have proved very effective. We propose new incremental methods, consisting of proximal iterations applied to single components, as well as combinations of gradient, subgradient, and proximal iterations. We provide a convergence and rate of convergence analysis of a variety of such methods, including some that involve randomization in the selection of components.We also discuss applications in a few contexts, including signal processing and inference/machine learning.United States. Air Force Office of Scientific Research (grant FA9550-10-1-0412
    • …
    corecore