82 research outputs found

    Transitive and self-dual codes attaining the Tsfasman-Vladut-Zink bound

    Get PDF
    A major problem in coding theory is the question of whether the class of cyclic codes is asymptotically good. In this correspondence-as a generalization of cyclic codes-the notion of transitive codes is introduced (see Definition 1.4 in Section I), and it is shown that the class of transitive codes is asymptotically good. Even more, transitive codes attain the Tsfasman-Vladut-Zink bound over F-q, for all squares q = l(2). It is also shown that self-orthogonal and self-dual codes attain the Tsfasman-Vladut-Zink bound, thus improving previous results about self-dual codes attaining the Gilbert-Varshamov bound. The main tool is a new asymptotically optimal tower E-0 subset of E-1 subset of E-2 subset of center dot center dot center dot of function fields over F-q (with q = l(2)), where all extensions E-n/E-0 are Galois

    Subquadratic time encodable codes beating the Gilbert-Varshamov bound

    Full text link
    We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse

    Entanglement-assisted Quantum Codes from Algebraic Geometry Codes

    Full text link
    Quantum error correcting codes play the role of suppressing noise and decoherence in quantum systems by introducing redundancy. Some strategies can be used to improve the parameters of these codes. For example, entanglement can provide a way for quantum error correcting codes to achieve higher rates than the one obtained via the traditional stabilizer formalism. Such codes are called entanglement-assisted quantum (QUENTA) codes. In this paper, we use algebraic geometry codes to construct several families of QUENTA codes via the Euclidean and the Hermitian construction. Two of the families created have maximal entanglement and have quantum Singleton defect equal to zero or one. Comparing the other families with the codes with the respective quantum Gilbert-Varshamov bound, we show that our codes have a rate that surpasses that bound. At the end, asymptotically good towers of linear complementary dual codes are used to obtain asymptotically good families of maximal entanglement QUENTA codes. Furthermore, a simple comparison with the quantum Gilbert-Varshamov bound demonstrates that using our construction it is possible to create an asymptotically family of QUENTA codes that exceeds this bound.Comment: Some results in this paper were presented at the 2019 IEEE International Symposium on Information Theor

    Torsion Limits and Riemann-Roch Systems for Function Fields and Applications

    Get PDF
    The Ihara limit (or -constant) A(q)A(q) has been a central problem of study in the asymptotic theory of global function fields (or equivalently, algebraic curves over finite fields). It addresses global function fields with many rational points and, so far, most applications of this theory do not require additional properties. Motivated by recent applications, we require global function fields with the additional property that their zero class divisor groups contain at most a small number of dd-torsion points. We capture this by the torsion limit, a new asymptotic quantity for global function fields. It seems that it is even harder to determine values of this new quantity than the Ihara constant. Nevertheless, some non-trivial lower- and upper bounds are derived. Apart from this new asymptotic quantity and bounds on it, we also introduce Riemann-Roch systems of equations. It turns out that this type of equation system plays an important role in the study of several other problems in areas such as coding theory, arithmetic secret sharing and multiplication complexity of finite fields etc. Finally, we show how our new asymptotic quantity, our bounds on it and Riemann-Roch systems can be used to improve results in these areas.Comment: Accepted for publication in IEEE Transactions on Information Theory. This is an extended version of our paper in Proceedings of 31st Annual IACR CRYPTO, Santa Barbara, Ca., USA, 2011. The results in Sections 5 and 6 did not appear in that paper. A first version of this paper has been widely circulated since November 200

    Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs

    Get PDF
    A novel technique, based on the pseudo-random properties of certain graphs known as expanders, is used to obtain novel simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling, and then regrouping the code coordinates. For any fixed (small) rate, and for a sufficiently large alphabet, the codes thus obtained lie above the Zyablov bound. Using these codes as outer codes in a concatenated scheme, a second asymptotic good construction is obtained which applies to small alphabets (say, GF(2)) as well. Although these concatenated codes lie below the Zyablov bound, they are still superior to previously known explicit constructions in the zero-rate neighborhood
    corecore