14 research outputs found

    BIPED LOCOMOTION: STABILITY, ANALYSIS AND CONTROL

    Get PDF

    Compliant Leg Architectures and a Linear Control Strategy for the Stable Running of Planar Biped Robots

    Get PDF
    This paper investigates two fundamental structures for biped robots and a control strategy to achieve stable biped running. The first biped structure contains straight legs with telescopic springs, and the second one contains knees with compliant elements in parallel with the motors. With both configurations we can use a standard linear discrete-time state-feedback control strategy to achieve an active periodic stable biped running gait, using the Poincare map of one complete step to produce the discrete-time model. In this case, the Poincare map describes an open-loop system with an unstable equilibrium, requiring a closed loop control for tabilization. The discretization contains a stance phase, a flight phase and a touch-down. In the first approach, the control signals remain constant during each phase, while in the second approach both phases are discretized into a number of constant-torque intervals, so that its formulation can be applied easily to stabilize any active biped running gait. Simulation results with both the straight-legged and the kneed biped model demonstrate stable gaits on both horizontal and inclined surfaces

    SLIP-Based Control of Bipedal Walking Based on Two-Level Control Strategy

    Get PDF
    In this research, we propose a two-level control strategy for simultaneous gait generation and stable control of planar walking of the Assume The Robot Is A Sphere (ATRIAS) biped robot with unlocked torso, utilizing active spring-loaded inverted pendulum (ASLIP) as reference models. The upper level consists of an energy-regulating control calculated using the ASLIP model, producing reference ground reaction forces (GRFs) for the desired gait. In the lower level controller, PID force controllers for the motors ensure tracking of the reference GRFs for ATRIAS direct dynamics. Meanwhile, ATRIAS torso angle is controlled stably to make it able to follow a point mass template model. Advantages of the proposed control strategy include simplicity and efficiency. Simulation results using ATRIAS’s complete dynamic model show that the proposed two-level controller can reject initial condition disturbances while generating stable and steady walking motion

    Stability and Completion of Zeno Equilibria in Lagrangian Hybrid Systems

    Get PDF
    This paper studies Lagrangian hybrid systems, which are a special class of hybrid systems modeling mechanical systems with unilateral constraints that are undergoing impacts. This class of systems naturally display Zeno behavior-an infinite number of discrete transitions that occur in finite time, leading to the convergence of solutions to limit sets called Zeno equilibria. This paper derives simple conditions for stability of Zeno equilibria. Utilizing these results and the constructive techniques used to prove them, the paper introduces the notion of a completed hybrid system which is an extended hybrid system model allowing for the extension of solutions beyond Zeno points. A procedure for practical simulation of completed hybrid systems is outlined, and conditions guaranteeing upper bounds on the incurred numerical error are derived. Finally, we discuss an application of these results to the stability of unilaterally constrained motion of mechanical systems under perturbations that violate the constraint

    Asymptotically stable running for a five-link, four-actuator, planar bipedal robot

    Get PDF
    Abstract — Provably asymptotically stable running gaits are developed for the five-link, four-actuator bipedal robot, RABBIT. A controller is designed so that the Poincaré return map associated with periodic running gaits can be computed on the basis of a model with impulse-effects that, perviously, had been used only for the design of walking gaits. This feedback design leads to the notion of a hybrid zero dynamics (HZD) for running, which in turn allows the existence and stability of running gaits to be determined on the basis of a scalar map. The main results are illustrated via simulations performed on models with known parameters and on models with parameter uncertainty and structural changes. Animations of the resulting running motions are available on the web. Index Terms — Bipedal robots; hybrid systems; limit cycles; underactuated; nonlinear control. I

    Intelligent approaches in locomotion - a review

    Get PDF

    Asymptotically Stable Running for a Five-Link, Four-Actuator, Planar Bipedal Robot

    No full text
    Provably asymptotically stable running gaits are developed for the five-link, four-actuator bipedal robot, RABBIT. A controller is designed so that the Poincaré return map associated with periodic running gaits can be computed on the basis of a model with impulse-effects that, previously, had been used only for the design of walking gaits. This feedback design leads to the notion of a hybrid zero dynamics for running, which in turn allows the existence and stability of running gaits to be determined on the basis of a scalar map. The main results are illustrated via simulations performed on models with known parameters and on models with parameter uncertainty and structural changes. Animations of the resulting running motions are available on the web

    Stability and Completion of Zeno Equilibria in Lagrangian Hybrid Systems

    Get PDF
    This paper studies Lagrangian hybrid systems, which are a special class of hybrid systems modeling mechanical systems with unilateral constraints that are undergoing impacts. This class of systems naturally display Zeno behavior-an infinite number of discrete transitions that occur in finite time, leading to the convergence of solutions to limit sets called Zeno equilibria. This paper derives simple conditions for stability of Zeno equilibria. Utilizing these results and the constructive techniques used to prove them, the paper introduces the notion of a completed hybrid system which is an extended hybrid system model allowing for the extension of solutions beyond Zeno points. A procedure for practical simulation of completed hybrid systems is outlined, and conditions guaranteeing upper bounds on the incurred numerical error are derived. Finally, we discuss an application of these results to the stability of unilaterally constrained motion of mechanical systems under perturbations that violate the constraint
    corecore