5,063 research outputs found

    Subcritical graph classes containing all planar graphs

    Get PDF
    We construct minor-closed addable families of graphs that are subcritical and contain all planar graphs. This contradicts (one direction of) a well-known conjecture of Noy

    The Erd\H{o}s-Rothschild problem on edge-colourings with forbidden monochromatic cliques

    Get PDF
    Let k:=(k1,,ks)\mathbf{k} := (k_1,\dots,k_s) be a sequence of natural numbers. For a graph GG, let F(G;k)F(G;\mathbf{k}) denote the number of colourings of the edges of GG with colours 1,,s1,\dots,s such that, for every c{1,,s}c \in \{1,\dots,s\}, the edges of colour cc contain no clique of order kck_c. Write F(n;k)F(n;\mathbf{k}) to denote the maximum of F(G;k)F(G;\mathbf{k}) over all graphs GG on nn vertices. This problem was first considered by Erd\H{o}s and Rothschild in 1974, but it has been solved only for a very small number of non-trivial cases. We prove that, for every k\mathbf{k} and nn, there is a complete multipartite graph GG on nn vertices with F(G;k)=F(n;k)F(G;\mathbf{k}) = F(n;\mathbf{k}). Also, for every k\mathbf{k} we construct a finite optimisation problem whose maximum is equal to the limit of log2F(n;k)/(n2)\log_2 F(n;\mathbf{k})/{n\choose 2} as nn tends to infinity. Our final result is a stability theorem for complete multipartite graphs GG, describing the asymptotic structure of such GG with F(G;k)=F(n;k)2o(n2)F(G;\mathbf{k}) = F(n;\mathbf{k}) \cdot 2^{o(n^2)} in terms of solutions to the optimisation problem.Comment: 16 pages, to appear in Math. Proc. Cambridge Phil. So

    On the Nonlinear Stability of Asymptotically Anti-de Sitter Solutions

    Get PDF
    Despite the recent evidence that anti-de Sitter spacetime is nonlinearly unstable, we argue that many asymptotically anti-de Sitter solutions are nonlinearly stable. This includes geons, boson stars, and black holes. As part of our argument, we calculate the frequencies of long-lived gravitational quasinormal modes of AdS black holes in various dimensions. We also discuss a new class of asymptotically anti-de Sitter solutions describing noncoalescing black hole binaries.Comment: 26 pages. 5 figure

    On the limiting distribution of the metric dimension for random forests

    Get PDF
    The metric dimension of a graph G is the minimum size of a subset S of vertices of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension for two different models of random forests, in each case obtaining normal limit distributions for this parameter.Comment: 22 pages, 5 figure
    corecore