16,742 research outputs found

    Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian potentials

    Get PDF
    We consider a class of fully-nonlinear Fermi-Pasta-Ulam (FPU) lattices, consisting of a chain of particles coupled by fractional power nonlinearities of order α>1\alpha >1. This class of systems incorporates a classical Hertzian model describing acoustic wave propagation in chains of touching beads in the absence of precompression. We analyze the propagation of localized waves when α\alpha is close to unity. Solutions varying slowly in space and time are searched with an appropriate scaling, and two asymptotic models of the chain of particles are derived consistently. The first one is a logarithmic KdV equation, and possesses linearly orbitally stable Gaussian solitary wave solutions. The second model consists of a generalized KdV equation with H\"older-continuous fractional power nonlinearity and admits compacton solutions, i.e. solitary waves with compact support. When α1+\alpha \rightarrow 1^+, we numerically establish the asymptotically Gaussian shape of exact FPU solitary waves with near-sonic speed, and analytically check the pointwise convergence of compactons towards the limiting Gaussian profile

    Efficient computation of delay differential equations with highly oscillatory terms.

    Get PDF
    This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory problem. This leads to methods which, counter-intuitively to those developed according to standard numerical reasoning, exhibit improved performance with growing frequency of oscillation
    corecore