9 research outputs found

    Asymptotic enumeration of orientations

    Get PDF
    International audienceWe find the asymptotic number of 2-orientations of quadrangulations with n inner faces, and of 3-orientations of triangulations with n inner vertices. We also find the asymptotic number of prime 2-orientations (no separating quadrangle) and prime 3-orientations (no separating triangle). The estimates we find are of the form c . n(-alpha)gamma(n), for suitable constants c, alpha, gamma with alpha = 4 for 2-orientations and alpha = 5 for 3-orientations. The proofs are based on singularity analysis of D-finite generating functions, using the Fuchsian theory of complex linear differential equations

    Asymptotic enumeration of orientations

    Get PDF
    We find the asymptotic number of 2-orientations of quadrangulations with n inner faces, and of 3-orientations of triangulations with n inner vertices. We also find the asymptotic number of prime 2-orientations (no separating quadrangle) and prime 3-orientations (no separating triangle). The estimates we find are of the form c . n(-alpha)gamma(n), for suitable constants c, alpha, gamma with alpha = 4 for 2-orientations and alpha = 5 for 3-orientations. The proofs are based on singularity analysis of D-finite generating functions, using the Fuchsian theory of complex linear differential equations

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    The Geometry of Random Tournaments

    Get PDF
    A tournament is an orientation of a graph. Each edge is a match, directed towards the winner. The score sequence lists the number of wins by each team. In this article, by interpreting score sequences geometrically, we generalize and extend classical theorems of Landau (Bull. Math. Biophys. 15, 143–148 (1953)) and Moon (Pac. J. Math. 13, 1343–1345 (1963)), via the theory of zonotopal tilings

    Schnyder decompositions for regular plane graphs and application to drawing

    Full text link
    Schnyder woods are decompositions of simple triangulations into three edge-disjoint spanning trees crossing each other in a specific way. In this article, we define a generalization of Schnyder woods to dd-angulations (plane graphs with faces of degree dd) for all d≥3d\geq 3. A \emph{Schnyder decomposition} is a set of dd spanning forests crossing each other in a specific way, and such that each internal edge is part of exactly d−2d-2 of the spanning forests. We show that a Schnyder decomposition exists if and only if the girth of the dd-angulation is dd. As in the case of Schnyder woods (d=3d=3), there are alternative formulations in terms of orientations ("fractional" orientations when d≥5d\geq 5) and in terms of corner-labellings. Moreover, the set of Schnyder decompositions on a fixed dd-angulation of girth dd is a distributive lattice. We also show that the structures dual to Schnyder decompositions (on dd-regular plane graphs of mincut dd rooted at a vertex v∗v^*) are decompositions into dd spanning trees rooted at v∗v^* such that each edge not incident to v∗v^* is used in opposite directions by two trees. Additionally, for even values of dd, we show that a subclass of Schnyder decompositions, which are called even, enjoy additional properties that yield a reduced formulation; in the case d=4, these correspond to well-studied structures on simple quadrangulations (2-orientations and partitions into 2 spanning trees). In the case d=4, the dual of even Schnyder decompositions yields (planar) orthogonal and straight-line drawing algorithms. For a 4-regular plane graph GG of mincut 4 with nn vertices plus a marked vertex vv, the vertices of G\vG\backslash v are placed on a (n−1)×(n−1)(n-1) \times (n-1) grid according to a permutation pattern, and in the orthogonal drawing each of the 2n−22n-2 edges of G\vG\backslash v has exactly one bend. Embedding also the marked vertex vv is doable at the cost of two additional rows and columns and 8 additional bends for the 4 edges incident to vv. We propose a further compaction step for the drawing algorithm and show that the obtained grid-size is strongly concentrated around 25n/32×25n/3225n/32\times 25n/32 for a uniformly random instance with nn vertices

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. ([13]). On the other hand, Chudnovsky and Seymour ([8]) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with n vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγn, where c > 0 and γ ∼ 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (not necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations

    Asymptotics in the schema of simple varieties of trees

    Get PDF
    We study the functional equation y(x) = xA(y(x)) satisfied by the generating functions in the schema of simple varieties of trees. The radii of convergence r, R of y, A respectively satisfy y(r) <= R. In the subcritical case (y(r) < R), y_n behaves asymptotically as C·r^(-n)·n^(-3/2). In the critical case (y(r)=R), we approach the problem of determining the asymptotics of a_n when the information of y(x) is well known. To that end, we give sufficient conditions that ensure that A(z) can be extended to a delta domain around its dominant singularity R, which is needed to be able to apply the transfer theorem when determining the asymptotics. We do a similar analysis for the equation y(x) = x+ B(y(x)), which appears in the additive schema of simple varieties of trees. The general framework we propose includes the three examples of extension to a delta domain of the functions A(z) and B(z) encountered in the literature so far

    Asymptotic enumeration of orientations of a graph as a function of the out-degree sequence

    No full text
    We prove an asymptotic formula for the number of orientations with given out-degree (score) sequence for a graph GG. The graph GG is assumed to have average degrees at least n1/3+εn^{1/3 + \varepsilon} for some ε>0\varepsilon > 0, and to have strong mixing properties, while the maximum imbalance (out-degree minus in-degree) of the orientation should be not too large. Our enumeration results have applications to the study of subdigraph occurrences in random orientations with given imbalance sequence. As one step of our calculation, we obtain new bounds for the maximum likelihood estimators for the Bradley-Terry model of paired comparisons.Comment: Accepted to the Electronic Journal of Combinatoric
    corecore