235 research outputs found

    The Waldschmidt constant for squarefree monomial ideals

    Get PDF
    Given a squarefree monomial ideal IR=k[x1,,xn]I \subseteq R =k[x_1,\ldots,x_n], we show that α^(I)\widehat\alpha(I), the Waldschmidt constant of II, can be expressed as the optimal solution to a linear program constructed from the primary decomposition of II. By applying results from fractional graph theory, we can then express α^(I)\widehat\alpha(I) in terms of the fractional chromatic number of a hypergraph also constructed from the primary decomposition of II. Moreover, expressing α^(I)\widehat\alpha(I) as the solution to a linear program enables us to prove a Chudnovsky-like lower bound on α^(I)\widehat\alpha(I), thus verifying a conjecture of Cooper-Embree-H\`a-Hoefel for monomial ideals in the squarefree case. As an application, we compute the Waldschmidt constant and the resurgence for some families of squarefree monomial ideals. For example, we determine both constants for unions of general linear subspaces of Pn\mathbb{P}^n with few components compared to nn, and we find the Waldschmidt constant for the Stanley-Reisner ideal of a uniform matroid.Comment: 26 pages. This project was started at the Mathematisches Forschungsinstitut Oberwolfach (MFO) as part of the mini-workshop "Ideals of Linear Subspaces, Their Symbolic Powers and Waring Problems" held in February 2015. Comments are welcome. Revised version corrects some typos, updates the references, and clarifies some hypotheses. To appear in the Journal of Algebraic Combinatoric

    Conflict-free coloring of graphs

    Full text link
    We study the conflict-free chromatic number chi_{CF} of graphs from extremal and probabilistic point of view. We resolve a question of Pach and Tardos about the maximum conflict-free chromatic number an n-vertex graph can have. Our construction is randomized. In relation to this we study the evolution of the conflict-free chromatic number of the Erd\H{o}s-R\'enyi random graph G(n,p) and give the asymptotics for p=omega(1/n). We also show that for p \geq 1/2 the conflict-free chromatic number differs from the domination number by at most 3.Comment: 12 page

    A coding problem for pairs of subsets

    Full text link
    Let XX be an nn--element finite set, 0<kn/20<k\leq n/2 an integer. Suppose that {A1,A2}\{A_1,A_2\} and {B1,B2}\{B_1,B_2\} are pairs of disjoint kk-element subsets of XX (that is, A1=A2=B1=B2=k|A_1|=|A_2|=|B_1|=|B_2|=k, A1A2=A_1\cap A_2=\emptyset, B1B2=B_1\cap B_2=\emptyset). Define the distance of these pairs by d({A1,A2},{B1,B2})=min{A1B1+A2B2,A1B2+A2B1}d(\{A_1,A_2\} ,\{B_1,B_2\})=\min \{|A_1-B_1|+|A_2-B_2|, |A_1-B_2|+|A_2-B_1|\} . This is the minimum number of elements of A1A2A_1\cup A_2 one has to move to obtain the other pair {B1,B2}\{B_1,B_2\}. Let C(n,k,d)C(n,k,d) be the maximum size of a family of pairs of disjoint subsets, such that the distance of any two pairs is at least dd. Here we establish a conjecture of Brightwell and Katona concerning an asymptotic formula for C(n,k,d)C(n,k,d) for k,dk,d are fixed and nn\to \infty. Also, we find the exact value of C(n,k,d)C(n,k,d) in an infinite number of cases, by using special difference sets of integers. Finally, the questions discussed above are put into a more general context and a number of coding theory type problems are proposed.Comment: 11 pages (minor changes, and new citations added
    corecore