23,475 research outputs found

    Cramer-Rao Lower Bound for Point Based Image Registration with Heteroscedastic Error Model for Application in Single Molecule Microscopy

    Full text link
    The Cramer-Rao lower bound for the estimation of the affine transformation parameters in a multivariate heteroscedastic errors-in-variables model is derived. The model is suitable for feature-based image registration in which both sets of control points are localized with errors whose covariance matrices vary from point to point. With focus given to the registration of fluorescence microscopy images, the Cramer-Rao lower bound for the estimation of a feature's position (e.g. of a single molecule) in a registered image is also derived. In the particular case where all covariance matrices for the localization errors are scalar multiples of a common positive definite matrix (e.g. the identity matrix), as can be assumed in fluorescence microscopy, then simplified expressions for the Cramer-Rao lower bound are given. Under certain simplifying assumptions these expressions are shown to match asymptotic distributions for a previously presented set of estimators. Theoretical results are verified with simulations and experimental data

    Cramer-Rao Bounds for Joint RSS/DoA-Based Primary-User Localization in Cognitive Radio Networks

    Full text link
    Knowledge about the location of licensed primary-users (PU) could enable several key features in cognitive radio (CR) networks including improved spatio-temporal sensing, intelligent location-aware routing, as well as aiding spectrum policy enforcement. In this paper we consider the achievable accuracy of PU localization algorithms that jointly utilize received-signal-strength (RSS) and direction-of-arrival (DoA) measurements by evaluating the Cramer-Rao Bound (CRB). Previous works evaluate the CRB for RSS-only and DoA-only localization algorithms separately and assume DoA estimation error variance is a fixed constant or rather independent of RSS. We derive the CRB for joint RSS/DoA-based PU localization algorithms based on the mathematical model of DoA estimation error variance as a function of RSS, for a given CR placement. The bound is compared with practical localization algorithms and the impact of several key parameters, such as number of nodes, number of antennas and samples, channel shadowing variance and correlation distance, on the achievable accuracy are thoroughly analyzed and discussed. We also derive the closed-form asymptotic CRB for uniform random CR placement, and perform theoretical and numerical studies on the required number of CRs such that the asymptotic CRB tightly approximates the numerical integration of the CRB for a given placement.Comment: 20 pages, 11 figures, 1 table, submitted to IEEE Transactions on Wireless Communication

    Linear theory for filtering nonlinear multiscale systems with model error

    Full text link
    We study filtering of multiscale dynamical systems with model error arising from unresolved smaller scale processes. The analysis assumes continuous-time noisy observations of all components of the slow variables alone. For a linear model with Gaussian noise, we prove existence of a unique choice of parameters in a linear reduced model for the slow variables. The linear theory extends to to a non-Gaussian, nonlinear test problem, where we assume we know the optimal stochastic parameterization and the correct observation model. We show that when the parameterization is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa. Given the correct parameterization, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that parameters estimated online, as part of a filtering procedure, produce accurate filtering and equilibrium statistical prediction. In contrast, a linear regression based offline method, which fits the parameters to a given training data set independently from the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed

    Gap bootstrap methods for massive data sets with an application to transportation engineering

    Get PDF
    In this paper we describe two bootstrap methods for massive data sets. Naive applications of common resampling methodology are often impractical for massive data sets due to computational burden and due to complex patterns of inhomogeneity. In contrast, the proposed methods exploit certain structural properties of a large class of massive data sets to break up the original problem into a set of simpler subproblems, solve each subproblem separately where the data exhibit approximate uniformity and where computational complexity can be reduced to a manageable level, and then combine the results through certain analytical considerations. The validity of the proposed methods is proved and their finite sample properties are studied through a moderately large simulation study. The methodology is illustrated with a real data example from Transportation Engineering, which motivated the development of the proposed methods.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS587 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Parameter Estimation and Uncertainty Quantication for an Epidemic Model

    Get PDF
    We examine estimation of the parameters of Susceptible-Infective-Recovered (SIR) models in the context of least squares. We review the use of asymptotic statistical theory and sensitivity analysis to obtain measures of uncertainty for estimates of the model parameters and the basic reproductive number (R0 )—an epidemiologically significant parameter grouping. We find that estimates of different parameters, such as the transmission parameter and recovery rate, are correlated, with the magnitude and sign of this correlation depending on the value of R0. Situations are highlighted in which this correlation allows R0 to be estimated with greater ease than its constituent parameters. Implications of correlation for parameter identifiability are discussed. Uncertainty estimates and sensitivity analysis are used to investigate how the frequency at which data is sampled affects the estimation process and how the accuracy and uncertainty of estimates improves as data is collected over the course of an outbreak. We assess the informativeness of individual data points in a given time series to determine when more frequent sampling (if possible) would prove to be most beneficial to the estimation process. This technique can be used to design data sampling schemes in more general contexts

    Advances in forecast evaluation

    Get PDF
    This paper surveys recent developments in the evaluation of point forecasts. Taking West’s (2006) survey as a starting point, we briefly cover the state of the literature as of the time of West’s writing. We then focus on recent developments, including advancements in the evaluation of forecasts at the population level (based on true, unknown model coefficients), the evaluation of forecasts in the finite sample (based on estimated model coefficients), and the evaluation of conditional versus unconditional forecasts. We present original results in a few subject areas: the optimization of power in determining the split of a sample into in-sample and out-of-sample portions; whether the accuracy of inference in evaluation of multistep forecasts can be improved with the judicious choice of HAC estimator (it can); and the extension of West’s (1996) theory results for population-level, unconditional forecast evaluation to the case of conditional forecast evaluation.Forecasting ; Time-series analysis

    Real-time flutter analysis

    Get PDF
    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared
    corecore