1,734 research outputs found

    Multiscale Problems in Solidification Processes

    Get PDF
    Our objective is to describe solidification phenomena in alloy systems. In the classical approach, balance equations in the phases are coupled to conditions on the phase boundaries which are modelled as moving hypersurfaces. The Gibbs-Thomson condition ensures that the evolution is consistent with thermodynamics. We present a derivation of that condition by defining the motion via a localized gradient flow of the entropy. Another general framework for modelling solidification of alloys with multiple phases and components is based on the phase field approach. The phase boundary motion is then given by a system of Allen-Cahn type equations for order parameters. In the sharp interface limit, i.e., if the smallest length scale ± related to the thickness of the diffuse phase boundaries converges to zero, a model with moving boundaries is recovered. In the case of two phases it can even be shown that the approximation of the sharp interface model by the phase field model is of second order in ±. Nowadays it is not possible to simulate the microstructure evolution in a whole workpiece. We present a two-scale model derived by homogenization methods including a mathematical justification by an estimate of the model error

    Quantitative Phase Field Model of Alloy Solidification

    Full text link
    We present a detailed derivation and thin interface analysis of a phase-field model that can accurately simulate microstructural pattern formation for low-speed directional solidification of a dilute binary alloy. This advance with respect to previous phase-field models is achieved by the addition of a phenomenological "antitrapping" solute current in the mass conservation relation [A. Karma, Phys. Rev. Lett 87, 115701 (2001)]. This antitrapping current counterbalances the physical, albeit artificially large, solute trapping effect generated when a mesoscopic interface thickness is used to simulate the interface evolution on experimental length and time scales. Furthermore, it provides additional freedom in the model to suppress other spurious effects that scale with this thickness when the diffusivity is unequal in solid and liquid [R. F. Almgren, SIAM J. Appl. Math 59, 2086 (1999)], which include surface diffusion and a curvature correction to the Stefan condition. This freedom can also be exploited to make the kinetic undercooling of the interface arbitrarily small even for mesoscopic values of both the interface thickness and the phase-field relaxation time, as for the solidification of pure melts [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The performance of the model is demonstrated by calculating accurately for the first time within a phase-field approach the Mullins-Sekerka stability spectrum of a planar interface and nonlinear cellular shapes for realistic alloy parameters and growth conditions.Comment: 51 pages RevTeX, 5 figures; expanded introduction and discussion; one table and one reference added; various small correction

    Transient convective instabilities in directional solidification

    Full text link
    We study the convective instability of the melt during the initial transient in a directional solidification experiment in a vertical configuration. We obtain analytically the dispersion relation, and perform an additional asymptotic expansion for large Rayleigh number that permits a simpler analytical analysis and a better numerical behavior. We find a transient instability, i.e. a regime in which the system destabilizes during the transient whereas the final unperturbed steady state is stable. This could be relevant to growth mode predictions in solidification.Comment: 28 pages, 5 figures. The following article has been accepted for publication in Physics of Fluids. After it is published, it will be found at http://pof.aip.or

    Lattice Boltzmann simulations of 3D crystal growth: Numerical schemes for a phase-field model with anti-trapping current

    Full text link
    A lattice-Boltzmann (LB) scheme, based on the Bhatnagar-Gross-Krook (BGK) collision rules is developed for a phase-field model of alloy solidification in order to simulate the growth of dendrites. The solidification of a binary alloy is considered, taking into account diffusive transport of heat and solute, as well as the anisotropy of the solid-liquid interfacial free energy. The anisotropic terms in the phase-field evolution equation, the phenomenological anti-trapping current (introduced in the solute evolution equation to avoid spurious solute trapping), and the variation of the solute diffusion coefficient between phases, make it necessary to modify the equilibrium distribution functions of the LB scheme with respect to the one used in the standard method for the solution of advection-diffusion equations. The effects of grid anisotropy are removed by using the lattices D3Q15 and D3Q19 instead of D3Q7. The method is validated by direct comparison of the simulation results with a numerical code that uses the finite-difference method. Simulations are also carried out for two different anisotropy functions in order to demonstrate the capability of the method to generate various crystal shapes

    Sharp-Interface Limit of a Fluctuating Phase-Field Model

    Full text link
    We present a derivation of the sharp-interface limit of a generic fluctuating phase-field model for solidification. As a main result, we obtain a sharp-interface projection which presents noise terms in both the diffusion equation and in the moving boundary conditions. The presented procedure does not rely on the fluctuation-dissipation theorem, and can therefore be applied to account for both internal and external fluctuations in either variational or non-variational phase-field formulations. In particular, it can be used to introduce thermodynamical fluctuations in non-variational formulations of the phase-field model, which permit to reach better computational efficiency and provide more flexibility for describing some features of specific physical situations. This opens the possibility of performing quantitative phase-field simulations in crystal growth while accounting for the proper fluctuations of the system.Comment: 21 pages, 1 figure, submitted to Phys. Rev.
    corecore