78,846 research outputs found

    Reducing variance in univariate smoothing

    Full text link
    A variance reduction technique in nonparametric smoothing is proposed: at each point of estimation, form a linear combination of a preliminary estimator evaluated at nearby points with the coefficients specified so that the asymptotic bias remains unchanged. The nearby points are chosen to maximize the variance reduction. We study in detail the case of univariate local linear regression. While the new estimator retains many advantages of the local linear estimator, it has appealing asymptotic relative efficiencies. Bandwidth selection rules are available by a simple constant factor adjustment of those for local linear estimation. A simulation study indicates that the finite sample relative efficiency often matches the asymptotic relative efficiency for moderate sample sizes. This technique is very general and has a wide range of applications.Comment: Published at http://dx.doi.org/10.1214/009053606000001398 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Confidence intervals for test information and relative efficiency

    Get PDF
    In latent theory the measurement properties of a mental test can be expressed in the test information function. The relative merits of two tests for the same latent trait can be described by the relative efficiency function, i.e. the ratio of the test information functions. It is argued that these functions have to be estimated if the values of the item difficulties are unknown. Using conditional maximum likelihood estimation as indicated by Andersen (1973), pointwise asymptotic distributions of the test information and relative efficiency function are derived for the case of dichotomously scored Rasch homogeneous items. Formulas for confidence intervals are derived from the asymptotic distributions. An application to a mathematics test is given and extensions to other latent trait models are discussed

    Adaptive Inference in Heteroskedastic Fractional Time Series Models

    Get PDF
    We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroskedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in such cases, unconditional heteroskedasticity in ates its variance matrix by a scalar quantity, λ > 1, thereby inducing a loss in efficiency relative to the unconditionally homoskedastic case, λ = 1. We propose an adaptive version of the CSS estimator, based on non-parametric kernel-based estimation of the unconditional volatility process. We show that adaptive estimation eliminates the factor λ from the variance matrix, thereby delivering the same asymptotic efficiency as that attained by the standard CSS estimator in the unconditionally homoskedastic case and, hence, asymptotic efficiency under Gaussianity. Importantly, the asymptotic analysis is based on a novel proof strategy, which does not require consistent estimation (in the sup norm) of the volatility process. Consequently, we are able to work under a weaker set of assumptions than those employed in the extant literature. The asymptotic variance matrices of both the standard and adaptive CSS estimators depend on any weak parametric autocorrelation present in the fractional model and any conditional heteroskedasticity in the shocks. Consequently, asymptotically pivotal inference can be achieved through the development of confidence regions or hypothesis tests using either heteroskedasticity-robust standard errors and/or a wild bootstrap. Monte Carlo simulations and empirical applications illustrate the practical usefulness of the methods proposed

    Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments

    Get PDF
    We propose and evaluate a technique for instrumental variables estimation of linear models with conditional heteroskedasticity. The technique uses approximating parametric models for the projection of right hand side variables onto the instrument space, and for conditional heteroskedasticity and serial correlation of the disturbance. Use of parametric models allows one to exploit information in all lags of instruments, unconstrained by degrees of freedom limitations. Analytical calculations and simulations indicate that there sometimes are large asymptotic and finite sample efficiency gains relative to conventional estimators (Hansen (1982)), and modest gains or losses depending on data generating process and sample size relative to quasi-maximum likelihood. These results are robust to minor misspecification of the parametric models used by our estimator.

    Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments

    Get PDF
    We propose and evaluate a technique for instrumental variables estimation of linear models with conditional heteroskedasticity. The technique uses approximating parametric models for the projection of right hand side variables onto the instrument space, and for conditional heteroskedasticity and serial correlation of the disturbance. Use of parametric models allows one to exploit information in all lags of instruments, unconstrained by degrees of freedom limitations. Analytical calculations and simulations indicate that there sometimes are large asymptotic and finite sample efficiency gains relative to conventional estimators (Hansen (1982)), and modest gains or losses depending on data generating process and sample size relative to quasi-maximum likelihood. These results are robust to minor misspecification of the parametric models used by our estimator.
    corecore