61 research outputs found

    Joint Unitary Triangularization for MIMO Networks

    Full text link
    This work considers communication networks where individual links can be described as MIMO channels. Unlike orthogonal modulation methods (such as the singular-value decomposition), we allow interference between sub-channels, which can be removed by the receivers via successive cancellation. The degrees of freedom earned by this relaxation are used for obtaining a basis which is simultaneously good for more than one link. Specifically, we derive necessary and sufficient conditions for shaping the ratio vector of sub-channel gains of two broadcast-channel receivers. We then apply this to two scenarios: First, in digital multicasting we present a practical capacity-achieving scheme which only uses scalar codes and linear processing. Then, we consider the joint source-channel problem of transmitting a Gaussian source over a two-user MIMO channel, where we show the existence of non-trivial cases, where the optimal distortion pair (which for high signal-to-noise ratios equals the optimal point-to-point distortions of the individual users) may be achieved by employing a hybrid digital-analog scheme over the induced equivalent channel. These scenarios demonstrate the advantage of choosing a modulation basis based upon multiple links in the network, thus we coin the approach "network modulation".Comment: Submitted to IEEE Tran. Signal Processing. Revised versio

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design
    corecore