4 research outputs found

    Ultra Low Power Digital Circuit Design for Wireless Sensor Network Applications

    Get PDF
    Ny forskning innenfor feltet trĂ„dlĂžse sensornettverk Ă„pner for nye og innovative produkter og lĂžsninger. Biomedisinske anvendelser er blant omrĂ„dene med stĂžrst potensial og det investeres i dag betydelige belĂžp for Ă„ bruke denne teknologien for Ă„ gjĂžre medisinsk diagnostikk mer effektiv samtidig som man Ă„pner for fjerndiagnostikk basert pĂ„ trĂ„dlĂžse sensornoder integrert i et ”helsenett”. MĂ„let er Ă„ forbedre tjenestekvalitet og redusere kostnader samtidig som brukerne skal oppleve forbedret livskvalitet som fĂžlge av Ăžkt trygghet og mulighet for Ă„ tilbringe mest mulig tid i eget hjem og unngĂ„ unĂždvendige sykehusbesĂžk og innleggelser. For Ă„ gjĂžre dette til en realitet er man avhengige av sensorelektronikk som bruker minst mulig energi slik at man oppnĂ„r tilstrekkelig batterilevetid selv med veldig smĂ„ batterier. I sin avhandling ” Ultra Low power Digital Circuit Design for Wireless Sensor Network Applications” har PhD-kandidat Farshad Moradi fokusert pĂ„ nye lĂžsninger innenfor konstruksjon av energigjerrig digital kretselektronikk. Avhandlingen presenterer nye lĂžsninger bĂ„de innenfor aritmetiske og kombinatoriske kretser, samtidig som den studerer nye statiske minneelementer (SRAM) og alternative minnearkitekturer. Den ser ogsĂ„ pĂ„ utfordringene som oppstĂ„r nĂ„r silisiumteknologien nedskaleres i takt med mikroprosessorutviklingen og foreslĂ„r lĂžsninger som bidrar til Ă„ gjĂžre kretslĂžsninger mer robuste og skalerbare i forhold til denne utviklingen. De viktigste konklusjonene av arbeidet er at man ved Ă„ introdusere nye konstruksjonsteknikker bĂ„de er i stand til Ă„ redusere energiforbruket samtidig som robusthet og teknologiskalerbarhet Ăžker. Forskningen har vĂŠrt utfĂžrt i samarbeid med Purdue University og vĂŠrt finansiert av Norges ForskningsrĂ„d gjennom FRINATprosjektet ”Micropower Sensor Interface in Nanometer CMOS Technology”

    Novel dual-threshold voltage FinFETs for circuit design and optimization

    Get PDF
    A great research effort has been invested on finding alternatives to CMOS that have better process variation and subthreshold leakage. From possible candidates, FinFET is the most compatible with respect to CMOS and it has shown promising leakage and speed performance. This thesis introduces basic characteristics of FinFETs and the effects of FinFET physical parameters on their performance are explained quantitatively. I show how dual- V th independent-gate FinFETs can be fabricated by optimizing their physical parameters. Optimum values for these physical parameters are derived using the physics-based University of Florida SPICE model for double-gate devices, and the optimized FinFETs are simulated and validated using Sentaurus TCAD simulations. Dual-14, FinFETs with independent gates enable series and parallel merge transformations in logic gates, realizing compact low power alternative gates with competitive performance and reduced input capacitance in comparison to conventional FinFET gates. Furthermore, they also enable the design of a new class of compact logic gates with higher expressive power and flexibility than CMOS gates. Synthesis results for 16 benchmark circuits from the ISCAS and OpenSPARC suites indicate that on average at 2GHz and 75°C, the library that contains the novel gates reduces total power and the number of fins by 36% and 37% respectively, over a conventional library that does not have novel gates in the 32nm technology

    Dual-Vth Independent-Gate FinFETs for Low Power Logic Circuits

    Get PDF
    This paper describes the electrode work-function, oxide thickness, gate-source/drain underlap, and silicon thickness optimization required to realize dual-Vth independent-gate FinFETs. Optimum values for these FinFET design parameters are derived using the physics-based University of Florida SPICE model for double-gate devices, and the optimized FinFETs are simulated and validated using Sentaurus TCAD simulations. Dual-Vth FinFETs with independent gates enable series and parallel merge transformations in logic gates, realizing compact low power alternative gates with competitive performance and reduced input capacitance in comparison to conventional FinFET gates. Furthermore, they also enable the design of a new class of compact logic gates with higher expressive power and flexibility than conventional CMOS gates, e.g., implementing 12 unique Boolean functions using only four transistors. Circuit designs that balance and improve the performance of the novel gates are described. The gates are designed and calibrated using the University of Florida double-gate model into conventional and enhanced technology libraries. Synthesis results for 16 benchmark circuits from the ISCAS and OpenSPARC suites indicate that on average at 2GHz, the enhanced library reduces total power and the number of fins by 36% and 37%, respectively, over a conventional library designed using shorted-gate FinFETs in 32 nm technology

    Asymmetric dual-gate multi-fin keeper bias options and optimization for low power and robust FinFET domino logic

    No full text
    A variable threshold voltage keeper circuit technique using independent-gate FinFET technology is proposed in this paper for simultaneous power reduction and speed enhancement in domino logic circuits. The threshold voltage of a keeper transistor is dynamically modified during circuit operation to reduce contention current without sacrificing noise immunity. The optimum independent-gate keeper gate bias conditions are identified for achieving maximum savings in delay and power consumption while maintaining identical noise immunity as compared to the standard tied-gate FinFET domino circuits. With the variable threshold voltage asymmetric double-gate keeper circuit technique the evaluation speed is enhanced by up to 49% while reducing the power consumption by up to 46% as compared to a standard domino logic circuit designed for similar noise margin in a 32nm FinFET technology. © 2008 IEEE
    corecore