4,066 research outputs found

    Relatedness Measures to Aid the Transfer of Building Blocks among Multiple Tasks

    Full text link
    Multitask Learning is a learning paradigm that deals with multiple different tasks in parallel and transfers knowledge among them. XOF, a Learning Classifier System using tree-based programs to encode building blocks (meta-features), constructs and collects features with rich discriminative information for classification tasks in an observed list. This paper seeks to facilitate the automation of feature transferring in between tasks by utilising the observed list. We hypothesise that the best discriminative features of a classification task carry its characteristics. Therefore, the relatedness between any two tasks can be estimated by comparing their most appropriate patterns. We propose a multiple-XOF system, called mXOF, that can dynamically adapt feature transfer among XOFs. This system utilises the observed list to estimate the task relatedness. This method enables the automation of transferring features. In terms of knowledge discovery, the resemblance estimation provides insightful relations among multiple data. We experimented mXOF on various scenarios, e.g. representative Hierarchical Boolean problems, classification of distinct classes in the UCI Zoo dataset, and unrelated tasks, to validate its abilities of automatic knowledge-transfer and estimating task relatedness. Results show that mXOF can estimate the relatedness reasonably between multiple tasks to aid the learning performance with the dynamic feature transferring.Comment: accepted by The Genetic and Evolutionary Computation Conference (GECCO 2020

    Cross-domain sentiment classification using a sentiment sensitive thesaurus

    Get PDF
    Automatic classification of sentiment is important for numerous applications such as opinion mining, opinion summarization, contextual advertising, and market analysis. However, sentiment is expressed differently in different domains, and annotating corpora for every possible domain of interest is costly. Applying a sentiment classifier trained using labeled data for a particular domain to classify sentiment of user reviews on a different domain often results in poor performance. We propose a method to overcome this problem in cross-domain sentiment classification. First, we create a sentiment sensitive distributional thesaurus using labeled data for the source domains and unlabeled data for both source and target domains. Sentiment sensitivity is achieved in the thesaurus by incorporating document level sentiment labels in the context vectors used as the basis for measuring the distributional similarity between words. Next, we use the created thesaurus to expand feature vectors during train and test times in a binary classifier. The proposed method significantly outperforms numerous baselines and returns results that are comparable with previously proposed cross-domain sentiment classification methods. We conduct an extensive empirical analysis of the proposed method on single and multi-source domain adaptation, unsupervised and supervised domain adaptation, and numerous similarity measures for creating the sentiment sensitive thesaurus

    Luminoso at SemEval-2018 Task 10: Distinguishing Attributes Using Text Corpora and Relational Knowledge

    Full text link
    Luminoso participated in the SemEval 2018 task on "Capturing Discriminative Attributes" with a system based on ConceptNet, an open knowledge graph focused on general knowledge. In this paper, we describe how we trained a linear classifier on a small number of semantically-informed features to achieve an F1F_1 score of 0.7368 on the task, close to the task's high score of 0.75.Comment: SemEval 2018, 5 page

    Distributional Measures of Semantic Distance: A Survey

    Full text link
    The ability to mimic human notions of semantic distance has widespread applications. Some measures rely only on raw text (distributional measures) and some rely on knowledge sources such as WordNet. Although extensive studies have been performed to compare WordNet-based measures with human judgment, the use of distributional measures as proxies to estimate semantic distance has received little attention. Even though they have traditionally performed poorly when compared to WordNet-based measures, they lay claim to certain uniquely attractive features, such as their applicability in resource-poor languages and their ability to mimic both semantic similarity and semantic relatedness. Therefore, this paper presents a detailed study of distributional measures. Particular attention is paid to flesh out the strengths and limitations of both WordNet-based and distributional measures, and how distributional measures of distance can be brought more in line with human notions of semantic distance. We conclude with a brief discussion of recent work on hybrid measures

    Younger and older adults weigh multiple cues in a similar manner to generate judgments of learning

    Get PDF
    One’s memory for past test performance (MPT) is a key piece of information individuals use when deciding how to restudy material. We used a multi-trial recognition memory task to examine adult age differences in the influence of MPT (measured by actual Trial 1 memory accuracy and subjective confidence judgments, CJs) along with Trial 1 judgments of learning (JOLs), objective and participant-estimated recognition fluencies, and Trial 2 study time on Trial 2 JOLs. We found evidence of simultaneous and independent influences of multiple objective and subjective (i.e., metacognitive) cues on Trial 2 JOLs, and these relationships were highly similar for younger and older adults. Individual differences in Trial 1 recognition accuracy and CJs on Trial 2 JOLs indicate that individuals may vary in the degree to which they rely on each MPT cue when assessing subsequent memory confidence. Aging appears to spare the ability to access multiple cues when making JOLs
    corecore