5,032 research outputs found

    Extending snBench to Support Hierarchical and Configurable Scheduling

    Full text link
    It is useful in systems that must support multiple applications with various temporal requirements to allow application-specific policies to manage resources accordingly. However, there is a tension between this goal and the desire to control and police possibly malicious programs. The Java-based Sensor Execution Environment (SXE) in snBench presents a situation where such considerations add value to the system. Multiple applications can be run by multiple users with varied temporal requirements, some Real-Time and others best effort. This paper outlines and documents an implementation of a hierarchical and configurable scheduling system with which different applications can be executed using application-specific scheduling policies. Concurrently the system administrator can define fairness policies between applications that are imposed upon the system. Additionally, to ensure forward progress of system execution in the face of malicious or malformed user programs, an infrastructure for execution using multiple threads is described

    BEAT: An Open-Source Web-Based Open-Science Platform

    Get PDF
    With the increased interest in computational sciences, machine learning (ML), pattern recognition (PR) and big data, governmental agencies, academia and manufacturers are overwhelmed by the constant influx of new algorithms and techniques promising improved performance, generalization and robustness. Sadly, result reproducibility is often an overlooked feature accompanying original research publications, competitions and benchmark evaluations. The main reasons behind such a gap arise from natural complications in research and development in this area: the distribution of data may be a sensitive issue; software frameworks are difficult to install and maintain; Test protocols may involve a potentially large set of intricate steps which are difficult to handle. Given the raising complexity of research challenges and the constant increase in data volume, the conditions for achieving reproducible research in the domain are also increasingly difficult to meet. To bridge this gap, we built an open platform for research in computational sciences related to pattern recognition and machine learning, to help on the development, reproducibility and certification of results obtained in the field. By making use of such a system, academic, governmental or industrial organizations enable users to easily and socially develop processing toolchains, re-use data, algorithms, workflows and compare results from distinct algorithms and/or parameterizations with minimal effort. This article presents such a platform and discusses some of its key features, uses and limitations. We overview a currently operational prototype and provide design insights.Comment: References to papers published on the platform incorporate

    Understanding, Discovering and Leveraging a Software System's Effective Configuration Space

    Get PDF
    Many modern software systems are highly configurable. While a high degree of configurability has many benefits, such as extensibility, reusability and portability, it also has its costs. In the worst case, the full configuration space of a system is the exponentially large combination of all possible option settings and every configuration can potentially produce unique behavior in the software system. Therefore, this software configuration space explosion problem adds combinatorial complexity to many already difficult software engineering tasks. To date, much of the research in this area has tackled this problem using black-box techniques, such as combinatorial interaction testing (CIT). Although these techniques are promising in systematizing the testing and analysis of configurable systems, they ignore a system's internal structure and we think that is a huge missed opportunity. We hypothesize that systems are often structured such that their effective configuration spaces -- the set of configurations needed to achieve a specific goal -- are often much smaller than their full configuration spaces. And if we can efficiently identify or approximate the effective configuration spaces, then we can use that information to greatly improve various software engineering tasks. To understand the effective configuration spaces of software systems, we used symbolic evaluation, a white-box analysis, to capture all executions a system can take under any configuration. The symbolic evaluation results confirmed that the effective configuration spaces are in fact the composition of many small, self-contained groupings of options. And we developed analysis techniques to succinctly characterize how configurations interact with a system's internal structures. We showed that while the majority of a system's interactions are relatively low strength, some important high-strength interactions do exist, and that existing approaches such as CIT are highly unlikely to generate them in practice. Results from our in-depth investigations serve as the foundation for developing new approaches to efficiently discovering effective configuration spaces. We proposed a new algorithm called interaction tree discovery (iTree) that aims to identify sets of configurations that are smaller than those generated by CIT, while also including important high-strength interactions missed by practical applications of CIT. On each iteration of iTree, we first use low-strength covering array to test the system under, and then apply machine learning techniques to discover new interactions that are potentially responsible for any new coverage seen. By repeating this process, iTree builds up a set of configurations likely to contain key high-strength interactions. We evaluated iTree and our results strongly suggest that iTree can identify high-coverage sets of configurations more effectively than traditional CIT or random sampling. We next developed the interaction learning approach that estimates the configuration interactions underlying the effective configuration space by building classification models for iTree execution results. This approach is light-weight, yet produces accurate estimates of the interactions; making leveraging effective configuration spaces practical for many software engineering tasks. Using this approach, we were able to approximate the effective configuration space of the ~1M-LOC MySQL, something that is infeasible using existing techniques, at very low cost

    Understanding Variability-Aware Analysis in Low-Maturity Variant-Rich Systems

    Get PDF
    Context: Software systems often exist in many variants to support varying stakeholder requirements, such as specific market segments or hardware constraints. Systems with many variants (a.k.a. variant-rich systems) are highly complex due to the variability introduced to support customization. As such, assuring the quality of these systems is also challenging since traditional single-system analysis techniques do not scale when applied. To tackle this complexity, several variability-aware analysis techniques have been conceived in the last two decades to assure the quality of a branch of variant-rich systems called software product lines. Unfortunately, these techniques find little application in practice since many organizations do use product-line engineering techniques, but instead rely on low-maturity \clo~strategies to manage their software variants. For instance, to perform an analysis that checks that all possible variants that can be configured by customers (or vendors) in a car personalization system conform to specified performance requirements, an organization needs to explicitly model system variability. However, in low-maturity variant-rich systems, this and similar kinds of analyses are challenging to perform due to (i) immature architectures that do not systematically account for variability, (ii) redundancy that is not exploited to reduce analysis effort, and (iii) missing essential meta-information, such as relationships between features and their implementation in source code.Objective: The overarching goal of the PhD is to facilitate quality assurance in low-maturity variant-rich systems. Consequently, in the first part of the PhD (comprising this thesis) we focus on gaining a better understanding of quality assurance needs in such systems and of their properties.Method: Our objectives are met by means of (i) knowledge-seeking research through case studies of open-source systems as well as surveys and interviews with practitioners; and (ii) solution-seeking research through the implementation and systematic evaluation of a recommender system that supports recording the information necessary for quality assurance in low-maturity variant-rich systems. With the former, we investigate, among other things, industrial needs and practices for analyzing variant-rich systems; and with the latter, we seek to understand how to obtain information necessary to leverage variability-aware analyses.Results: Four main results emerge from this thesis: first, we present the state-of-practice in assuring the quality of variant-rich systems, second, we present our empirical understanding of features and their characteristics, including information sources for locating them; third, we present our understanding of how best developers\u27 proactive feature location activities can be supported during development; and lastly, we present our understanding of how features are used in the code of non-modular variant-rich systems, taking the case of feature scattering in the Linux kernel.Future work: In the second part of the PhD, we will focus on processes for adapting variability-aware analyses to low-maturity variant-rich systems.Keywords:\ua0Variant-rich Systems, Quality Assurance, Low Maturity Software Systems, Recommender Syste
    • …
    corecore