49,882 research outputs found

    Deep Contrastive One-Class Time Series Anomaly Detection

    Full text link
    The accumulation of time-series data and the absence of labels make time-series Anomaly Detection (AD) a self-supervised deep learning task. Single-normality-assumption-based methods, which reveal only a certain aspect of the whole normality, are incapable of tasks involved with a large number of anomalies. Specifically, Contrastive Learning (CL) methods distance negative pairs, many of which consist of both normal samples, thus reducing the AD performance. Existing multi-normality-assumption-based methods are usually two-staged, firstly pre-training through certain tasks whose target may differ from AD, limiting their performance. To overcome the shortcomings, a deep Contrastive One-Class Anomaly detection method of time series (COCA) is proposed by authors, following the normality assumptions of CL and one-class classification. It treats the origin and reconstructed representations as the positive pair of negative-samples-free CL, namely "sequence contrast". Next, invariance terms and variance terms compose a contrastive one-class loss function in which the loss of the assumptions is optimized by invariance terms simultaneously and the ``hypersphere collapse'' is prevented by variance terms. In addition, extensive experiments on two real-world time-series datasets show the superior performance of the proposed method achieves state-of-the-art

    A Generic Machine Learning Framework for Fully-Unsupervised Anomaly Detection with Contaminated Data

    Full text link
    Anomaly detection (AD) tasks have been solved using machine learning algorithms in various domains and applications. The great majority of these algorithms use normal data to train a residual-based model, and assign anomaly scores to unseen samples based on their dissimilarity with the learned normal regime. The underlying assumption of these approaches is that anomaly-free data is available for training. This is, however, often not the case in real-world operational settings, where the training data may be contaminated with a certain fraction of abnormal samples. Training with contaminated data, in turn, inevitably leads to a deteriorated AD performance of the residual-based algorithms. In this paper we introduce a framework for a fully unsupervised refinement of contaminated training data for AD tasks. The framework is generic and can be applied to any residual-based machine learning model. We demonstrate the application of the framework to two public datasets of multivariate time series machine data from different application fields. We show its clear superiority over the naive approach of training with contaminated data without refinement. Moreover, we compare it to the ideal, unrealistic reference in which anomaly-free data would be available for training. Since the approach exploits information from the anomalies, and not only from the normal regime, it is comparable and often outperforms the ideal baseline as well

    Particle Filtering for Model-Based Anomaly Detection in Sensor Networks

    Get PDF
    A novel technique has been developed for anomaly detection of rocket engine test stand (RETS) data. The objective was to develop a system that postprocesses a csv file containing the sensor readings and activities (time-series) from a rocket engine test, and detects any anomalies that might have occurred during the test. The output consists of the names of the sensors that show anomalous behavior, and the start and end time of each anomaly. In order to reduce the involvement of domain experts significantly, several data-driven approaches have been proposed where models are automatically acquired from the data, thus bypassing the cost and effort of building system models. Many supervised learning methods can efficiently learn operational and fault models, given large amounts of both nominal and fault data. However, for domains such as RETS data, the amount of anomalous data that is actually available is relatively small, making most supervised learning methods rather ineffective, and in general met with limited success in anomaly detection. The fundamental problem with existing approaches is that they assume that the data are iid, i.e., independent and identically distributed, which is violated in typical RETS data. None of these techniques naturally exploit the temporal information inherent in time series data from the sensor networks. There are correlations among the sensor readings, not only at the same time, but also across time. However, these approaches have not explicitly identified and exploited such correlations. Given these limitations of model-free methods, there has been renewed interest in model-based methods, specifically graphical methods that explicitly reason temporally. The Gaussian Mixture Model (GMM) in a Linear Dynamic System approach assumes that the multi-dimensional test data is a mixture of multi-variate Gaussians, and fits a given number of Gaussian clusters with the help of the wellknown Expectation Maximization (EM) algorithm. The parameters thus learned are used for calculating the joint distribution of the observations. However, this GMM assumption is essentially an approximation and signals the potential viability of non-parametric density estimators. This is the key idea underlying the new approach

    Network anomaly detection: a survey and comparative analysis of stochastic and deterministic methods

    Get PDF
    7 pages. 1 more figure than final CDC 2013 versionWe present five methods to the problem of network anomaly detection. These methods cover most of the common techniques in the anomaly detection field, including Statistical Hypothesis Tests (SHT), Support Vector Machines (SVM) and clustering analysis. We evaluate all methods in a simulated network that consists of nominal data, three flow-level anomalies and one packet-level attack. Through analyzing the results, we point out the advantages and disadvantages of each method and conclude that combining the results of the individual methods can yield improved anomaly detection results
    corecore