2 research outputs found

    LNCS

    Get PDF
    We introduce the monitoring of trace properties under assumptions. An assumption limits the space of possible traces that the monitor may encounter. An assumption may result from knowledge about the system that is being monitored, about the environment, or about another, connected monitor. We define monitorability under assumptions and study its theoretical properties. In particular, we show that for every assumption A, the boolean combinations of properties that are safe or co-safe relative to A are monitorable under A. We give several examples and constructions on how an assumption can make a non-monitorable property monitorable, and how an assumption can make a monitorable property monitorable with fewer resources, such as integer registers

    Assumption-Based Runtime Verification with Partial Observability and Resets.

    No full text
    We consider Runtime Verification (RV) based on Propositional Linear Temporal Logic (LTL) with both future and past temporal operators. We generalize the framework to monitor partially observable systems using models of the system under scrutiny (SUS) as assumptions for reasoning on the non-observable or future behaviors of the SUS. The observations are general predicates over the SUS, thus both static and dynamic sets of observables are supported. Furthermore, the monitors are resettable, i.e. able to evaluate any LTL property at arbitrary positions of the input trace (roughly speaking, [ ⁣[u,iφ] ⁣][\![u,i\models \varphi ]\!] can be evaluated for any u and i with the underlying assumptions taken into account). We present a symbolic monitoring algorithm that can be efficiently implemented using BDD. It is proven correct and the monitor can be double-checked by model checking. As a by-product, we give the first automata-based monitoring algorithm for Past-Time LTL. Beside feasibility and effectiveness of our approach, we also demonstrate that, under certain assumptions the monitors of some properties are predictive
    corecore