93 research outputs found

    Visiting Artist to Conduct Workshop on Computer-Assisted Music Composition at UD

    Get PDF
    News release announces a workshop on using computers to compose music will be held at the University of Dayton

    Functional Scaffolding for Musical Composition: A New Approach in Computer-Assisted Music Composition

    Get PDF
    While it is important for systems intended to enhance musical creativity to define and explore musical ideas conceived by individual users, many limit musical freedom by focusing on maintaining musical structure, thereby impeding the user\u27s freedom to explore his or her individual style. This dissertation presents a comprehensive body of work that introduces a new musical representation that allows users to explore a space of musical rules that are created from their own melodies. This representation, called functional scaffolding for musical composition (FSMC), exploits a simple yet powerful property of multipart compositions: The pattern of notes and rhythms in different instrumental parts of the same song are functionally related. That is, in principle, one part can be expressed as a function of another. Music in FSMC is represented accordingly as a functional relationship between an existing human composition, or scaffold, and an additional generated voice. This relationship is encoded by a type of artificial neural network called a compositional pattern producing network (CPPN). A human user without any musical expertise can then explore how these additional generated voices should relate to the scaffold through an interactive evolutionary process akin to animal breeding. The utility of this insight is validated by two implementations of FSMC called NEAT Drummer and MaestroGenesis, that respectively help users tailor drum patterns and complete multipart arrangements from as little as a single original monophonic track. The five major contributions of this work address the overarching hypothesis in this dissertation that functional relationships alone, rather than specialized music theory, are sufficient for generating plausible additional voices. First, to validate FSMC and determine whether plausible generated voices result from the human-composed scaffold or intrinsic properties of the CPPN, drum patterns are created with NEAT Drummer to accompany several different polyphonic pieces. Extending the FSMC approach to generate pitched voices, the second contribution reinforces the importance of functional transformations through quality assessments that indicate that some partially FSMC-generated pieces are indistinguishable from those that are fully human. While the third contribution focuses on constructing and exploring a space of plausible voices with MaestroGenesis, the fourth presents results from a two-year study where students discuss their creative experience with the program. Finally, the fifth contribution is a plugin for MaestroGenesis called MaestroGenesis Voice (MG-V) that provides users a more natural way to incorporate MaestroGenesis in their creative endeavors by allowing scaffold creation through the human voice. Together, the chapters in this dissertation constitute a comprehensive approach to assisted music generation, enabling creativity without the need for musical expertise

    Taking the models back to music practice : evaluating generative transcription models built using deep learning

    Get PDF
    We extend our evaluation of generative models of music tran- scriptions that were first presented in Sturm, Santos, Ben-Tal, and Korshunova (2016). We evaluate the models in five different ways: 1) at the population level, comparing statistics of 30,000 generated transcriptions with those of over 23,000 training transcriptions; 2) at the practice level, examining the ways in which specific generated transcriptions are successful as music compositions; 3) as a “nefarious tester”, seeking the music knowledge limits of the models; 4) in the context of assisted music composition, using the models to create music within the conventions of the training data; and finally, 5) taking the models to real-world music practitioners. Our work attempts to demonstrate new approaches to evaluating the application of machine learning methods to modelling and making music, and the importance of taking the results back to the realm of music practice to judge their usefulness. Our datasets and software are open and available at https://github.com/IraKorshunova/folk-rnn

    A computational framework for aesthetical navigation in musical search space

    Get PDF
    Paper presented at 3rd AISB symposium on computational creativity, AISB 2016, 4-6th April, Sheffield. Abstract. This article addresses aspects of an ongoing project in the generation of artificial Persian (-like) music. Liquid Persian Music software (LPM) is a cellular automata based audio generator. In this paper LPM is discussed from the view point of future potentials of algorithmic composition and creativity. Liquid Persian Music is a creative tool, enabling exploration of emergent audio through new dimensions of music composition. Various configurations of the system produce different voices which resemble musical motives in many respects. Aesthetical measurements are determined by Zipf’s law in an evolutionary environment. Arranging these voices together for producing a musical corpus can be considered as a search problem in the LPM outputs space of musical possibilities. On this account, the issues toward defining the search space for LPM is studied throughout this paper

    L-Music: uma abordagem para composição musical assistida usando L-Systems

    Get PDF
    Generative music systems have been researched for an extended period of time. The scientific corpus of this research field is translating, currently, into the world of the everyday musician and composer. With these tools, the creative process of writing music can be augmented or completely replaced by machines. The work in this document aims to contribute to research in assisted music composition systems. To do so, a review on the state of the art of these fields was performed and we found that a plethora of methodologies and approaches each provide their own interesting results (to name a few, neural networks, statistical models, and formal grammars). We identified Lindenmayer Systems, or L-Systems, as the most interesting and least explored approach to develop an assisted music composition system prototype, aptly named L-Music, due to the ability of producing complex outputs from simple structures. L-Systems were initially proposed as a parallel string rewriting grammar to model algae plant growth. Their applications soon turned graphical (e.g., drawing fractals), and eventually they were applied to music generation. Given that our prototype is assistive, we also took the user interface and user experience design into its well-deserved consideration. Our implemented interface is straightforward, simple to use with a structured visual hierarchy and flow and enables musicians and composers to select their desired instruments; select L-Systems for generating music or create their own custom ones and edit musical parameters (e.g., scale and octave range) to further control the outcome of L-Music, which is musical fragments that a musician or composer can then use in their own works. Three musical interpretations on L-Systems were implemented: a random interpretation, a scale-based interpretation, and a polyphonic interpretation. All three approaches produced interesting musical ideas, which we found to be potentially usable by musicians and composers in their own creative works. Although positive results were obtained, the developed prototype has many improvements for future work. Further musical interpretations can be added, as well as increasing the number of possible musical parameters that a user can edit. We also identified the possibility of giving the user control over what musical meaning L-Systems have as an interesting future challenge.Sistemas de geração de música têm sido alvo de investigação durante períodos alargados de tempo. Recentemente, tem havido esforços em passar o conhecimento adquirido de sistemas de geração de música autónomos e assistidos para as mãos do músico e compositor. Com estas ferramentas, o processo criativo pode ser enaltecido ou completamente substituído por máquinas. O presente trabalho visa contribuir para a investigação de sistemas de composição musical assistida. Para tal, foi efetuado um estudo do estado da arte destas temáticas, sendo que foram encontradas diversas metodologias que ofereciam resultados interessantes de um ponto de vista técnico e musical. Os sistemas de Lindenmayer, ou L-Systems, foram selecionados como a abordagem mais interessante, e menos explorada, para desenvolver um protótipo de um sistema de composição musical assistido com o nome L-Music, devido à sua capacidade de produzirem resultados complexos a partir de estruturas simples. Os L-Systems, inicialmente propostos para modelar o crescimento de plantas de algas, são gramáticas formais, cujo processo de reescrita de strings acontece de forma paralela. As suas aplicações rapidamente evoluíram para interpretações gráficas (p.e., desenhar fractais), e eventualmente também foram aplicados à geração de música. Dada a natureza assistida do protótipo desenvolvido, houve uma especial atenção dada ao design da interface e experiência do utilizador. Esta, é concisa e simples, tendo uma hierarquia visual estruturada para oferecer uma orientação coesa ao utilizador. Neste protótipo, os utilizadores podem selecionar instrumentos; selecionar L-Systems ou criar os seus próprios, e editar parâmetros musicais (p.e., escala e intervalo de oitavas) de forma a gerarem excertos musicais que possam usar nas suas próprias composições. Foram implementadas três interpretações musicais de L-Systems: uma interpretação aleatória, uma interpretação à base de escalas e uma interpretação polifónica. Todas as interpretações produziram resultados musicais interessantes, e provaram ter potencial para serem utilizadas por músicos e compositores nos seus trabalhos criativos. Embora tenham sido alcançados resultados positivos, o protótipo desenvolvido apresenta múltiplas melhorias para trabalho futuro. Entre elas estão, por exemplo, a adição de mais interpretações musicais e a adição de mais parâmetros musicais editáveis pelo utilizador. A possibilidade de um utilizador controlar o significado musical de um L-System também foi identificada como uma proposta futura relevante

    Perceptual musical similarity metric learning with graph neural networks

    Get PDF
    Sound retrieval for assisted music composition depends on evaluating similarity between musical instrument sounds, which is partly influenced by playing techniques. Previous methods utilizing Euclidean nearest neighbours over acoustic features show some limitations in retrieving sounds sharing equivalent timbral properties, but potentially generated using a different instrument, playing technique, pitch or dynamic. In this paper, we present a metric learning system designed to approximate human similarity judgments between extended musical playing techniques using graph neural networks. Such structure is a natural candidate for solving similarity retrieval tasks, yet have seen little application in modelling perceptual music similarity. We optimize a Graph Convolutional Network (GCN) over acoustic features via a proxy metric learning loss to learn embeddings that reflect perceptual similarities. Specifically, we construct the graph's adjacency matrix from the acoustic data manifold with an example-wise adaptive k-nearest neighbourhood graph: Adaptive Neighbourhood Graph Neural Network (AN-GNN). Our approach achieves 96.4% retrieval accuracy compared to 38.5% with a Euclidean metric and 86.0% with a multilayer perceptron (MLP), while effectively considering retrievals from distinct playing techniques to the query example

    Computer-Assisted Music Composition Workshop Slated at University of Dayton; UD Marianist Rallies will Feature Offbeat Competitions for Student Teams; \u27Supermarket Sense\u27 Lunch-Hour Program will Help Shoppers Find Good Nutrition

    Get PDF
    News release announces upcoming events at UD including a workshop on using computers to compose music, Marianist Heritage Week activities, and a lunch-hour program on Supermarket Sense

    A latent rhythm complexity model for attribute-controlled drum pattern generation

    Get PDF
    AbstractMost music listeners have an intuitive understanding of the notion of rhythm complexity. Musicologists and scientists, however, have long sought objective ways to measure and model such a distinctively perceptual attribute of music. Whereas previous research has mainly focused on monophonic patterns, this article presents a novel perceptually-informed rhythm complexity measure specifically designed for polyphonic rhythms, i.e., patterns in which multiple simultaneous voices cooperate toward creating a coherent musical phrase. We focus on drum rhythms relating to the Western musical tradition and validate the proposed measure through a perceptual test where users were asked to rate the complexity of real-life drumming performances. Hence, we propose a latent vector model for rhythm complexity based on a recurrent variational autoencoder tasked with learning the complexity of input samples and embedding it along one latent dimension. Aided by an auxiliary adversarial loss term promoting disentanglement, this effectively regularizes the latent space, thus enabling explicit control over the complexity of newly generated patterns. Trained on a large corpus of MIDI files of polyphonic drum recordings, the proposed method proved capable of generating coherent and realistic samples at the desired complexity value. In our experiments, output and target complexities show a high correlation, and the latent space appears interpretable and continuously navigable. On the one hand, this model can readily contribute to a wide range of creative applications, including, for instance, assisted music composition and automatic music generation. On the other hand, it brings us one step closer toward achieving the ambitious goal of equipping machines with a human-like understanding of perceptual features of music
    corecore