924 research outputs found

    Effects of Assist-as-needed Robotic Training Paradigms on the Locomotor Recovery of Adult Spinal Mice

    Get PDF
    This paper introduces a new “assist-as needed” (AAN) training paradigm for rehabilitation of spinal cord injuries via robotic training devices. In the pilot study reported in this paper, nine female adult Swiss-Webster mice were divided into three groups, each experiencing a different robotic training control strategy: a fixed training trajectory (Fixed Group, A), an AAN training method without inter-limb coordination (Band Group, B), and an AAN training method with bilateral hindlimb coordination (Window Group, C). Fourteen days after complete transection at the mid-thoracic level, the mice were robotically trained to step in the presence of an acutely administered serotonin agonist, quipazine, for a period of six weeks. The mice that received AAN training (Groups B and C) show higher levels of recovery than Group A mice, as measured by the number, consistency, and periodicity of steps realized during testing sessions. Group C displays a higher incidence of alternating stepping than Group B. These results indicate that this training approach may be more effective than fixed trajectory paradigms in promoting robust post-injury stepping behavior. Furthermore, the constraint of inter-limb coordination appears to be an important contribution to successful training. Presented in this paper are also some preliminary results from a recent full-scale study that complements the conclusions from this pilot study

    Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation.

    Get PDF
    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery

    Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    Get PDF
    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration

    The Value of High Intensity Locomotor Training Applied to Patients With Acute-Onset Neurologic Injury

    Get PDF
    The purpose of this review is to delineate some of the evidence regarding the effects of exercise intensity during locomotor training in patients with stroke and iSCI. We provide specific definitions of exercise intensity used within the literature, describe methods used to ensure appropriate levels of exertion, and discuss potential adverse events and safety concerns during its application. Further details on the effects of locomotor training intensity on clinical outcomes, and on neuromuscular and cardiovascular function will be addressed as available. Existing literature across multiple studies and meta-analyses reveals that exercise training intensity is likely a major factor that can influence locomotor function after neurologic injury. To extend these findings, we describe previous attempts to implement moderate to high intensity interventions during physical rehabilitation of patients with neurologic injury, including the utility of specific strategies to facilitate implementation, and to navigate potential barriers that may arise during implementation efforts

    Bioinspired robotic rehabilitation tool for lower limb motor learning after stroke

    Get PDF
    Mención Internacional en el título de doctorEsta tesis doctoral presenta, tras repasar la marcha humana, las principales patologíıas y condiciones que la afectan, y los distintos enfoques de rehabilitación con la correspondiente implicación neurofisiológica, el camino de investigación que desemboca en la herramienta robótica de rehabilitación y las terapias que se han desarrollado en el marco de los proyectos europeos BioMot: Smart Wearable Robots with Bioinspired Sensory-Motor Skills y HANK: European advanced exoskeleton for rehabilitation of Acquired Brain Damage (ABD) and/or spinal cord injury’s patients, y probado bajo el paraguas del proyecto europeo ASTONISH: Advancing Smart Optical Imaging and Sensing for Health y el proyecto nacional ASSOCIATE: A comprehensive and wearable robotics based approach to the rehabilitation and assistance to people with stroke and spinal cord injury.This doctoral thesis presents, after reviewing human gait, the main pathologies and conditions that affect it, and the different rehabilitation approaches with the corresponding neurophysiological implications, the research journey that leads to the development of the rehabilitation robotic tool, and the therapies that have been designed, within the framework of the European projects BioMot: Smart Wearable Robots with Bioinspired Sensory-Motor Skills and HANK: European advanced exoskeleton for rehabilitation of Acquired Brain Damage (ABD) and/or spinal cord injury’s patients and tested under the umbrella of the European project ASTONISH: Advancing Smart Optical Imaging and Sensing for Health and the national project ASSOCIATE: A comprehensive and wearable robotics based approach to the rehabilitation and assistance to people with stroke and spinal cord injury.This work has been carried out at the Neural Rehabilitation Group (NRG), Cajal Institute, Spanish National Research Council (CSIC). The research presented in this thesis has been funded by the Commission of the European Union under the BioMot project - Smart Wearable Robots with Bioinspired Sensory-Motor Skills (Grant Agreement number IFP7-ICT - 611695); under HANK Project - European advanced exoskeleton for rehabilitation of Acquired Brain Damage (ABD) and/or spinal cord injury’s patients (Grant Agreements number H2020-EU.2. - PRIORITY ’Industrial leadership’ and H2020-EU.3. - PRIORITY ’Societal challenges’ - 699796); also under the ASTONISH Project - Advancing Smart Optical Imaging and Sensing for Health (Grant Agreement number H2020-EU.2.1.1.7. - ECSEL - 692470); with financial support of Spanish Ministry of Economy and Competitiveness (MINECO) under the ASSOCIATE project - A comprehensive and wearable robotics based approach to the rehabilitation and assistance to people with stroke and spinal cord injury (Grant Agreement number 799158449-58449-45-514); and with grant RYC-2014-16613, also by Spanish Ministry of Economy and Competitiveness.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Fernando Javier Brunetti Fernández.- Secretario: Dorin Sabin Copaci.- Vocal: Antonio Olivier

    Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking.</p> <p>Methods</p> <p>We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography.</p> <p>Results</p> <p>When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions.</p> <p>Conclusion</p> <p>These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.</p

    Robotic Resistance Treadmill Training Improves Locomotor Function in Human Spinal Cord Injury: A Pilot Study

    Get PDF
    Objective To determine whether cable-driven robotic resistance treadmill training can improve locomotor function in humans with incomplete spinal cord injury (SCI). Design Repeated assessment of the same patients with crossover design. Setting Research units of rehabilitation hospitals in Chicago. Participants Patients with chronic incomplete SCI (N=10) were recruited to participate in this study. Interventions Subjects were randomly assigned to 1 of 2 groups. One group received 4 weeks of assistance training followed by 4 weeks of resistance training, while the other group received 4 weeks of resistance training followed by 4 weeks of assistance training. Locomotor training was provided by using a cable-driven robotic locomotor training system, which is highly backdrivable and compliant, allowing patients the freedom to voluntarily move their legs in a natural gait pattern during body weight supported treadmill training (BWSTT), while providing controlled assistance/resistance forces to the leg during the swing phase of gait. Main Outcome Measures Primary outcome measures were evaluated for each participant before training and after 4 and 8 weeks of training. Primary measures were self-selected and fast overground walking velocity and 6-minute walking distance. Secondary measures included clinical assessments of balance, muscle tone, and strength. Results A significant improvement in walking speed and balance in humans with SCI was observed after robotic treadmill training using the cable-driven robotic locomotor trainer. There was no significant difference in walking functional gains after resistance versus assistance training, although resistance training was more effective for higher functioning patients. Conclusions Cable-driven robotic resistance training may be used as an adjunct to BWSTT for improving overground walking function in humans with incomplete SCI, particularly for those patients with relatively high function
    corecore