4 research outputs found

    Assessment of NUCAPS S-NPP CrIS/ATMS Sounding Products Using Reference and Conventional Radiosonde Observations

    No full text

    GEWEX water vapor assessment (G-VAP): final report

    Get PDF
    Este es un informe dentro del Programa para la Investigaci贸n del Clima Mundial (World Climate Research Programme, WCRP) cuya misi贸n es facilitar el an谩lisis y la predicci贸n de la variabilidad de la Tierra para proporcionar un valor a帽adido a la sociedad a nivel pr谩ctica. La WCRP tiene varios proyectos centrales, de los cuales el de Intercambio Global de Energ铆a y Agua (Global Energy and Water Exchanges, GEWEX) es uno de ellos. Este proyecto se centra en estudiar el ciclo hidrol贸gico global y regional, as铆 como sus interacciones a trav茅s de la radiaci贸n y energ铆a y sus implicaciones en el cambio global. Dentro de GEWEX existe el proyecto de Evaluaci贸n del Vapor de Agua (VAP, Water Vapour Assessment) que estudia las medidas de concentraciones de vapor de agua en la atm贸sfera, sus interacciones radiativas y su repercusi贸n en el cambio clim谩tico global.El vapor de agua es, de largo, el gas invernadero m谩s importante que reside en la atm贸sfera. Es, potencialmente, la causa principal de la amplificaci贸n del efecto invernadero causado por emisiones de origen humano (principalmente el CO2). Las medidas precisas de su concentraci贸n en la atm贸sfera son determinantes para cuantificar este efecto de retroalimentaci贸n positivo al cambio clim谩tico. Actualmente, se est谩 lejos de tener medidas de concentraciones de vapor de agua suficientemente precisas para sacar conclusiones significativas de dicho efecto. El informe del WCRP titulado "GEWEX water vapor assessment. Final Report" detalla el estado actual de las medidas de las concentraciones de vapor de agua en la atm贸sfera. AEMET ha colaborado en la generaci贸n de este informe y tiene a unos de sus miembros, Xavier Calbet, como co-autor de este informe

    A 20-YEAR CLIMATOLOGY OF GLOBAL ATMOSPHERIC METHANE FROM HYPERSPECTRAL THERMAL INFRARED SOUNDERS WITH SOME APPLICATIONS

    Get PDF
    Atmospheric Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2), and accounts for approximately 20% of the global warming produced by all well-mixed greenhouse gases. Thus, its spatiotemporal distributions and relevant long-term trends are critical to understanding the sources, sinks, and global budget of atmospheric composition, as well as the associated climate impacts. The current suite of hyperspectral thermal infrared sounders has provided continuous global methane data records since 2002, starting with the Atmospheric Infrared Sounder (AIRS) onboard the NASA EOS/Aqua satellite launched on 2 May 2002. The Cross-track Infrared Sounder (CrIS) was launched onboard the Suomi National Polar Orbiting Partnership (SNPP) on 28 October 2011 and then on NOAA-20 on 18 November 2017. The Infrared Atmospheric Sounding Interferometer (IASI) was launched onboard the EUMETSAT MetOp-A on 19 October 2006, followed by MetOp-B on 17 September 2012, then Metop-C on 7 November 2018. In this study, nearly two decades of global CH4 concentrations retrieved from the AIRS and CrIS sensors were analyzed. Results indicate that the global mid-upper tropospheric CH4 concentrations (centered around 400 hPa) increased significantly from 2003 to 2020, i.e., with an annual average of ~1754 ppbv in 2003 and ~1839 ppbv in 2020. The total increase is approximately 85 ppbv representing a +4.8% change in 18 years. More importantly, the rate of increase was derived using satellite measurements and shown to be consistent with the rate of increase previously reported only from in-situ observational measurements. It further confirmed that there was a steady increase starting in 2007 that became stronger since 2014, as also reported from the in-situ observations. In addition, comparisons of the methane retrieved from the AIRS and CrIS against in situ measurements from NOAA Global Monitoring Laboratory (GML) were conducted. One of the key findings of this comparative study is that there are phase shifts in the seasonal cycles between satellite thermal infrared measurements and ground measurements, especially in the middle to high latitudes in the northern hemisphere. Through this, an issue common in the hyperspectral thermal sensor retrievals were discovered that was unknown previously and offered potential solutions. We also conducted research on some applications of the retrieval products in monitoring the changes of CH4 over the selected regions (the Arctic and South America). Detailed analyses based on local geographic changes related to CH4 concentration increases were discussed. The results of this study concluded that while the atmospheric CH4 concentration over the Arctic region has been increasing since the early 2000s, there were no catastrophic sudden jumps during the period of 2008-2012, as indicated by the earlier studies using pre-validated retrieval products. From our study of CH4 climatology using hyperspectral infrared sounders, it has been proved that the CH4 from hyperspectral sounders provide valuable information on CH4 for the mid-upper troposphere and lower stratosphere. Future approaches are suggested that include: 1) Utilizing extended data records for CH4 monitoring using AIRS, CrIS, and other potential new generation hyperspectral infrared sensors; 2). Improving the algorithms for trace gas retrievals; and 3). Enhancing the capacity to detect CH4 changes and anomalies with radiance signals from hyperspectral infrared sounders
    corecore