5 research outputs found

    Assessment of Approximations in Aerosol Optical Properties and Vertical Distribution into FLEX Atmospherically-Corrected Surface Reflectance and Retrieved Sun-Induced Fluorescence

    No full text
    Physically-based atmospheric correction of optical Earth Observation satellite data is used to accurately derive surface biogeophysical parameters free from the atmospheric influence. While water vapor or surface pressure can be univocally characterized, the compensation of aerosol radiometric effects relies on assumptions and parametric approximations of their properties. To determine the validity of these assumptions and approximations in the atmospheric correction of ESA’s FLEX/Sentinel-3 tandem mission, a systematic error analysis of simulated FLEX data within the O 2 absorption bands was conducted. This paper presents the impact of key aerosol parameters in atmospherically-corrected FLEX surface reflectance and the subsequent Sun-Induced Fluorescence retrieval (SIF). We observed that: (1) a parametric characterization of aerosol scattering effects increases the accuracy of the atmospheric correction with respect to the commonly implemented discretization of aerosol optical properties by aerosol types and (2) the Ångström exponent and the aerosol vertical distribution have a residual influence in the atmospherically-corrected surface reflectance. In conclusion, a multi-parametric aerosol characterization is sufficient for the atmospheric correction of FLEX data (and SIF retrieval) within the mission requirements in nearly 85% (70%) of the cases with average aerosol load conditions. The future development of the FLEX atmospheric correction algorithm would therefore gain from a multi-parametric aerosol characterization based on the synergy of FLEX and Sentinel-3 data

    Towards the quantitative and physically-based interpretation of solar-induced vegetation fluorescence retrieved from global imaging

    Get PDF
    Due to emerging high spectral resolution, remote sensing techniques and ongoing developments to retrieve the spectrally resolved vegetation fluorescence spectrum from several scales, the light reactions of photosynthesis are receiving a boost of attention for the monitoring of the Earth's carbon balance. Sensor-retrieved vegetation fluorescence (from leaf, tower, airborne or satellite scale) originating from the excited antenna chlorophyll a molecule has become a new quantitative biophysical vegetation parameter retrievable from space using global imaging techniques. However, to retrieve the actual quantum efficiencies, and hence a true photosynthetic status of the observed vegetation, all signal distortions must be accounted for, and a high-precision true vegetation reflectance must be resolved. ESA's upcoming Fluorescence Explorer aims to deliver such novel products thanks to technological and instrumental advances, and by sophisticated approaches that will enable a deeper understanding of the mechanics of energy transfer underlying the photosynthetic process in plant canopies and ecosystems

    Satellite-based PM2.5 Exposure Estimation and Health Impacts over China

    Get PDF
    Exposure to suspended fine particulate matter (PM2.5) has been proven to adversely impact public health through increased risk of cardiovascular and respiratory mortality. Assessing health impacts of PM2.5 and its long-term variations requires accurate estimates of large-scale exposure data. Such data include mass concentration and particle size, the latter of which may be an effect modifier on PM2.5 attributable health risks. The availability of these exposure data, however, is limited by sparse ground-level monitoring networks. In this dissertation, an optical-mass relationship was first developed based on aerosol microphysical characteristics for ground-level PM2.5 retrieval. This method quantifies PM2.5 mass concentrations with a theoretical basis, which can simultaneously estimate large-scale particle size. The results demonstrate the effectiveness and applicability of the proposed method and reveal the spatiotemporal distribution of PM2.5 over China. To explore the spatial variability and population exposure, particle radii of PM2.5 are then derived using the developed theoretical relationship along with a statistical model for a better performance. The findings reveal the prevalence of exposure to small particles (i.e. PM1), identify the need for in-situ measurements of particle size, and motivate further research to investigate the effects of particle size on health outcomes. Finally, the long-term impacts of PM2.5 on health and environmental inequality are assessed by using the satellite-retrieved PM2.5 estimates over China during 2005-2017. Premature mortality attributable to PM2.5 exposure increased by 31% from 2005 to 2017. For some causes of death, the burden fell disproportionately on provinces with low-to-middle GDP per capita. As a whole, this work contributes to bridging satellite remote sensing and long-term exposure studies and sheds light on an ongoing need to understand the effects of PM2.5, including both concentrations and other particle characteristics, on human health
    corecore