1,880 research outputs found

    Assessing the Performance of a 60-GHz Dense Small-Cell Network Deployment from Ray-Based Simulations

    Full text link
    Future dense small-cell networks are one key 5G candidates to offer outdoor high access data rates, especially in millimeter wave (mmWave) frequency bands. At those frequencies, the free space propagation loss and shadowing (from buildings, vegetation or any kind of obstacles) are far stronger than in the traditional radio cellular spectrum. Therefore, the cell range is expected to be limited to 50 - 100 meters, and directive high gain antennas are required at least for the base stations. This paper investigates the kind of topology that is required to serve a suburban area with a small-cell network operating at 60 GHz and equipped with beam-steering antennas. A real environment is considered to introduce practical deployment and propagation constraints. The analysis relies on Monte-Carlo system simulations with non-full buffer, and ray-based predictions. The ray-tracing techniques are today identified as a relevant solution to capture the main channel properties impacting the beam-steering performance (angular dispersion, inter-link correlation); and the one involved in the present study was specifically enhanced to deal with detailed vegetation modeling. In addition to the user outage, the paper evaluates the evolution of the inter-cell interference along with the user density, and investigates the network behavior in case of local strong obstructions.Comment: IEEE 21st International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), October 201

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    Ray-based Deterministic Channel Modelling for sub-THz Band

    Get PDF
    Future wireless communications systems will require large network capacities beyond the capabilities of present and upcoming 5G technology. The trend of considering higher frequencies for their large bandwidths continues today into the sub-THz domain. The BRAVE project considers the frequencies in the 90-200 GHz spectrum, which have been considered in this paper. The challenges of channel modelling at sub-THz frequencies are described along with extensions made to a ray-based deterministic tool. The geographical and physical accuracies inherent to the ray-based tool are exploited to simulate two different scenarios. The first scenario is an indoor office scenario and the second is an outdoor in-street scenario. The application of the updated channel modelling properties of the ray-based tool provides interesting perspectives into the sub-THz channel modelling. This permits the development of realistic models for the evaluation, characterization and eventual deployment of such systems

    Assessing the WiFi offloading benefit on both service performance and EMF exposure in urban areas

    Get PDF
    In this paper we assess the benefit of WiFi offloading over dense urban scenarios in terms of both Quality of Service (QoS) and Electromagnetic Field (EMF) exposure. This study relies on results obtained with two complementary simulation platforms: a two-tier dynamic system-level simulator and a 3D coverage-based simulator. Outputs are usual service coverage key performance indicators, handover probability statistics, as well as common and innovative metrics for EMF exposure characterization that jointly take into account the contributions from the base-station and the User-Equipment (UE) transmissions. The main outcome is that, for elastic services, the best QoS and minimum global EMF exposure are jointly achieved with maximum WiFi offloading.This paper reports work undertaken in the context of the FP7 project LEXNET (GA nº 318273). Ramón Agüero also acknowledges the Spanish Government for the project “Connectivity as a Service: Access for the Internet of the Future”, COSAIF (TEC2012-38574-C02-02)

    RF Coverage Planning And Analysis With Adaptive Cell Sectorization In Millimeter Wave 5G Networks

    Get PDF
    The advancement of Fifth Generation Network (5G) technology is well underway, with Mobile Network Operators (MNOs) globally commencing the deployment of 5G networks within the mid-frequency spectrum range (3GHz–6GHz). Nevertheless, the escalating demands for data traffic are compelling MNOs to explore the high-frequency spectrum (24GHz–100GHz), which offers significantly larger bandwidth (400MHz-800 MHz) compared to the mid-frequency spectrum (3GHz–6GHz), which typically provides 50MHz-100MHz of bandwidth. However, it is crucial to note that the higher-frequency spectrum imposes substantial challenges due to exceptionally high free space propagation loss, resulting in 5G cell site coverage being limited to several hundred meters, in contrast to the several kilometers achievable with 4G. Consequently, MNOs are faced with the formidable task of accurately planning and deploying hundreds of new 5G cells to cover the same areas served by a single 4G cell.This dissertation embarks on a comprehensive exploration of Radio Frequency (RF) coverage planning for 5G networks, initially utilizing a conventional three-sector cell architecture. The coverage planning phase reveals potential challenges, including coverage gaps and poor Signal-to-Interference-plus-Noise Ratio (SINR). In response to these issues, the dissertation introduces an innovative cell site architecture that embraces both nine and twelve sector cells, enhancing RF coverage through the adoption of an advanced antenna system designed with subarrays, offering adaptive beamforming and beam steering capabilities. To further enhance energy efficiency, the dissertation introduces adaptive higher-order cell-sectorization (e.g., nine sector cells and twelve sector cells). In this proposed method, all sectors within a twelve-sector cell remain active during peak hours (e.g., daytime) and are reduced to fewer sectors (e.g., nine sectors or six sectors per cell) during off-peak hours (e.g., nighttime). This dynamic adjustment is facilitated by an advanced antenna system utilizing sub-array architecture, which employs adaptive beamforming and beam steering to tailor the beamwidth and radiation angle of each active sector. Simulation results unequivocally demonstrate significant enhancements in RF coverage and SINR with the implementation of higher-order cell-sectorization. Furthermore, the proposed adaptive cell-sectorization method significantly reduces energy consumption during off-peak hours. In addition to addressing RF coverage planning, this dissertation delves into the numerous challenges associated with deploying 5G networks in the higher frequency spectrum (30GHz-300GHz). It encompasses issues such as precise cell site planning, location acquisition, propagation modeling, energy efficiency, backhauling, and more. Furthermore, the dissertation offers valuable insights into future research directions aimed at effectively surmounting these challenges and optimizing the deployment of 5G networks in the high-frequency spectrum

    Analysis of the impact of EMF exposure in 5G deployments

    Get PDF
    Abstract. 5G or fifth-generation mobile network is being developed to meet the massive increase in data and connectivity, and it connects billions of devices via the internet of things. A significant advantage of 5G is the fast response time, also known as latency, which is delivered by faster connections and greater capacity. As 5G is using high frequencies such as above 6GHz, people are concerned about this electromagnetic field (EMF) exposure because it uses a large number of transmitters. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) issued guidelines to protect humans and the environment from radio frequency electro magnetic field (RF-EMF) exposure in the frequency range of 100kHz-300GHz. These constraints are expressed in terms of specific absorption rate (SAR), electric and magnetic field strength, and power density. The goal of this thesis is to analyse the impact of EMF exposure in 5G deployment. The first step was to examine the EMF and its characteristics in general and in 5G in particular. Characteristics of 5G which are relevant to the electromagnetic field were then analyzed. The regulations related to human exposure to EMF were investigated globally, regionally, and in selected countries and compared with the key parameters including incident electric field strength, incident magnetic field strength, and incident power strength. To analyze the impact of the EMF in 5G two methods were used to assess EMF exposure: calculating the minimum distance and assessing the power density. Power density assessments were done for three different frequency bands (700MHz,1800MHz, and 3.5GHz), five different environmental scenarios (indoor hotspot, dense urban, rural, urban macro massive machine-type communications (mMTC), urban micro ultra-reliable low-latency communications (URLLC), and four different scenarios of a typical 5G network (indoor hotspot, dense urban, micro, micro remote radio head (RRH)), and by co-locating the three transmitters in the frequency bands 700MHz,1800MHz and 3.5GHz. The results of the power density assessment in frequency bands 700MHz,1800Mhz, and 3.5GHz show that there is no EMF exposure near the transmitters. However, with the simulation results, we can see that there is an EMF exposure near the transmitter when considering various scenarios such as dense urban, rural, urban macro mMTC, urban micro URLLC, micro and micro remote radio head (RRH). With the simulation results of co-locating transmitters also we can see that there is also EMF exposure close to the transmitters. So, when deploying the 5G network in these environmental conditions, EMF regulations and limitations should be taken into greater account and deployment should be carried out to minimize this exposure. Thus, when planning the 5G network this exposed area should be included as a restricted area that the general public cannot access
    • …
    corecore