173,659 research outputs found

    Assessing the Ability of Self-Attention Networks to Learn Word Order

    Full text link
    Self-attention networks (SAN) have attracted a lot of interests due to their high parallelization and strong performance on a variety of NLP tasks, e.g. machine translation. Due to the lack of recurrence structure such as recurrent neural networks (RNN), SAN is ascribed to be weak at learning positional information of words for sequence modeling. However, neither this speculation has been empirically confirmed, nor explanations for their strong performances on machine translation tasks when "lacking positional information" have been explored. To this end, we propose a novel word reordering detection task to quantify how well the word order information learned by SAN and RNN. Specifically, we randomly move one word to another position, and examine whether a trained model can detect both the original and inserted positions. Experimental results reveal that: 1) SAN trained on word reordering detection indeed has difficulty learning the positional information even with the position embedding; and 2) SAN trained on machine translation learns better positional information than its RNN counterpart, in which position embedding plays a critical role. Although recurrence structure make the model more universally-effective on learning word order, learning objectives matter more in the downstream tasks such as machine translation.Comment: ACL 201

    Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop

    Full text link
    The EMNLP 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category

    What do Neural Machine Translation Models Learn about Morphology?

    Full text link
    Neural machine translation (MT) models obtain state-of-the-art performance while maintaining a simple, end-to-end architecture. However, little is known about what these models learn about source and target languages during the training process. In this work, we analyze the representations learned by neural MT models at various levels of granularity and empirically evaluate the quality of the representations for learning morphology through extrinsic part-of-speech and morphological tagging tasks. We conduct a thorough investigation along several parameters: word-based vs. character-based representations, depth of the encoding layer, the identity of the target language, and encoder vs. decoder representations. Our data-driven, quantitative evaluation sheds light on important aspects in the neural MT system and its ability to capture word structure.Comment: Updated decoder experiment
    • …
    corecore