4,164 research outputs found

    MRI-based Surgical Planning for Lumbar Spinal Stenosis

    Full text link
    The most common reason for spinal surgery in elderly patients is lumbar spinal stenosis(LSS). For LSS, treatment decisions based on clinical and radiological information as well as personal experience of the surgeon shows large variance. Thus a standardized support system is of high value for a more objective and reproducible decision. In this work, we develop an automated algorithm to localize the stenosis causing the symptoms of the patient in magnetic resonance imaging (MRI). With 22 MRI features of each of five spinal levels of 321 patients, we show it is possible to predict the location of lesion triggering the symptoms. To support this hypothesis, we conduct an automated analysis of labeled and unlabeled MRI scans extracted from 788 patients. We confirm quantitatively the importance of radiological information and provide an algorithmic pipeline for working with raw MRI scans

    Adversarial Connective-exploiting Networks for Implicit Discourse Relation Classification

    Full text link
    Implicit discourse relation classification is of great challenge due to the lack of connectives as strong linguistic cues, which motivates the use of annotated implicit connectives to improve the recognition. We propose a feature imitation framework in which an implicit relation network is driven to learn from another neural network with access to connectives, and thus encouraged to extract similarly salient features for accurate classification. We develop an adversarial model to enable an adaptive imitation scheme through competition between the implicit network and a rival feature discriminator. Our method effectively transfers discriminability of connectives to the implicit features, and achieves state-of-the-art performance on the PDTB benchmark.Comment: To appear in ACL201

    Combination of multiple neural networks using transfer learning and extensive geometric data augmentation for assessing cellularity scores in histopathology images

    Full text link
    Classification of cancer cellularity within tissue samples is currently a manual process performed by pathologists. This process of correctly determining cancer cellularity can be time intensive. Deep Learning (DL) techniques in particular have become increasingly more popular for this purpose, due to the accuracy and performance they exhibit, which can be comparable to the pathologists. This work investigates the capabilities of two DL approaches to assess cancer cellularity in whole slide images (WSI) in the SPIE-AAPM-NCI BreastPathQ challenge dataset. The effects of training on augmented data via rotations, and combinations of multiple architectures into a single network were analyzed using a modified Kendall Tau-b prediction probability metric known as the average prediction probability PK. A deep, transfer learned, Convolutional Neural Network (CNN) InceptionV3 was used as a baseline, achieving an average PK value of 0.884, showing improvement from the average PK value of 0.83 achieved by pathologists. The network was then trained on additional training datasets which were rotated between 1 and 360 degrees, which saw a peak increase of PK up to 4.2%. An additional architecture consisting of the InceptionV3 network and VGG16, a shallow, transfer learned CNN, was combined in a parallel architecture. This parallel architecture achieved a baseline average PK value of 0.907, a statistically significantly improvement over either of the architectures' performances separately (p<0.0001 by unpaired t-test).Comment: 7 pages (includes a cover page), 5 figures, 1 table, work addresses the BreastPathQ challeng

    DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation

    Full text link
    Automatic organ segmentation is an important yet challenging problem for medical image analysis. The pancreas is an abdominal organ with very high anatomical variability. This inhibits previous segmentation methods from achieving high accuracies, especially compared to other organs such as the liver, heart or kidneys. In this paper, we present a probabilistic bottom-up approach for pancreas segmentation in abdominal computed tomography (CT) scans, using multi-level deep convolutional networks (ConvNets). We propose and evaluate several variations of deep ConvNets in the context of hierarchical, coarse-to-fine classification on image patches and regions, i.e. superpixels. We first present a dense labeling of local image patches via P−ConvNetP{-}\mathrm{ConvNet} and nearest neighbor fusion. Then we describe a regional ConvNet (R1−ConvNetR_1{-}\mathrm{ConvNet}) that samples a set of bounding boxes around each image superpixel at different scales of contexts in a "zoom-out" fashion. Our ConvNets learn to assign class probabilities for each superpixel region of being pancreas. Last, we study a stacked R2−ConvNetR_2{-}\mathrm{ConvNet} leveraging the joint space of CT intensities and the P−ConvNetP{-}\mathrm{ConvNet} dense probability maps. Both 3D Gaussian smoothing and 2D conditional random fields are exploited as structured predictions for post-processing. We evaluate on CT images of 82 patients in 4-fold cross-validation. We achieve a Dice Similarity Coefficient of 83.6±\pm6.3% in training and 71.8±\pm10.7% in testing.Comment: To be presented at MICCAI 2015 - 18th International Conference on Medical Computing and Computer Assisted Interventions, Munich, German

    Spectral-spatial classification of hyperspectral images: three tricks and a new supervised learning setting

    Get PDF
    Spectral-spatial classification of hyperspectral images has been the subject of many studies in recent years. In the presence of only very few labeled pixels, this task becomes challenging. In this paper we address the following two research questions: 1) Can a simple neural network with just a single hidden layer achieve state of the art performance in the presence of few labeled pixels? 2) How is the performance of hyperspectral image classification methods affected when using disjoint train and test sets? We give a positive answer to the first question by using three tricks within a very basic shallow Convolutional Neural Network (CNN) architecture: a tailored loss function, and smooth- and label-based data augmentation. The tailored loss function enforces that neighborhood wavelengths have similar contributions to the features generated during training. A new label-based technique here proposed favors selection of pixels in smaller classes, which is beneficial in the presence of very few labeled pixels and skewed class distributions. To address the second question, we introduce a new sampling procedure to generate disjoint train and test set. Then the train set is used to obtain the CNN model, which is then applied to pixels in the test set to estimate their labels. We assess the efficacy of the simple neural network method on five publicly available hyperspectral images. On these images our method significantly outperforms considered baselines. Notably, with just 1% of labeled pixels per class, on these datasets our method achieves an accuracy that goes from 86.42% (challenging dataset) to 99.52% (easy dataset). Furthermore we show that the simple neural network method improves over other baselines in the new challenging supervised setting. Our analysis substantiates the highly beneficial effect of using the entire image (so train and test data) for constructing a model.Comment: Remote Sensing 201
    • …
    corecore