2,584 research outputs found

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Recovering from a Decade: A Systematic Mapping of Information Retrieval Approaches to Software Traceability

    Get PDF
    Engineers in large-scale software development have to manage large amounts of information, spread across many artifacts. Several researchers have proposed expressing retrieval of trace links among artifacts, i.e. trace recovery, as an Information Retrieval (IR) problem. The objective of this study is to produce a map of work on IR-based trace recovery, with a particular focus on previous evaluations and strength of evidence. We conducted a systematic mapping of IR-based trace recovery. Of the 79 publications classified, a majority applied algebraic IR models. While a set of studies on students indicate that IR-based trace recovery tools support certain work tasks, most previous studies do not go beyond reporting precision and recall of candidate trace links from evaluations using datasets containing less than 500 artifacts. Our review identified a need of industrial case studies. Furthermore, we conclude that the overall quality of reporting should be improved regarding both context and tool details, measures reported, and use of IR terminology. Finally, based on our empirical findings, we present suggestions on how to advance research on IR-based trace recovery

    IR-based traceability recovery as a plugin - an industrial case study

    Get PDF
    Large-scale software development is a complex undertaking and generates an ever-increasing amount of information. To be able to work efficiently under such circumstances, navigation in all available data needs support. Maintaining traceability links between software artefacts is one approach to structure the information space and support this challenge. Several researchers have proposed traceability recovery by applying IR methods, based on textual similarities between artefacts. Early studies have shown promising results, but no large-scale in vivo evaluations have been made. Currently, there is a trend among our industrial partners to collect artefacts in a specific new software engineering tool. Our goal is to develop an IR-based traceability recovery plugin to this tool. From this position, in the environment of possible future users, the usefulness of supported findability in a software engineering context could be explored with an industrial validity

    In vivo evaluation of large-scale IR-based traceability recovery

    Get PDF
    Modern large-scale software development is a complex undertaking and coordinating various processes is crucial to achieve efficiency. The alignment between requirements and test activities is one important aspect. Production and maintenance of software result in an ever-increasing amount of information. To be able to work efficiently under such circumstances, navigation in all available data needs support. Maintaining traceability links between software artifacts is one approach to structure the information space and support this challenge. Many researchers have proposed traceability recovery by applying information retrieval (IR) methods, utilizing the fact that artifacts often have textual content in natural language. Case studies have shown promising results, but no large-scale in vivo evaluations have been made. Currently, there is a trend among our industrial partners to move to a specific new software engineering tool. Their aim is to collect different pieces of information in one system. Our ambition is to develop an IR-based traceability recovery plug-in to this tool. From this position, right in the middle of a real industrial setting, many interesting observations could be made. This would allow a unique evaluation of the usefulness of the IR-based approach

    From Bugs to Decision Support – Leveraging Historical Issue Reports in Software Evolution

    Get PDF
    Software developers in large projects work in complex information landscapes and staying on top of all relevant software artifacts is an acknowledged challenge. As software systems often evolve over many years, a large number of issue reports is typically managed during the lifetime of a system, representing the units of work needed for its improvement, e.g., defects to fix, requested features, or missing documentation. Efficient management of incoming issue reports requires the successful navigation of the information landscape of a project. In this thesis, we address two tasks involved in issue management: Issue Assignment (IA) and Change Impact Analysis (CIA). IA is the early task of allocating an issue report to a development team, and CIA is the subsequent activity of identifying how source code changes affect the existing software artifacts. While IA is fundamental in all large software projects, CIA is particularly important to safety-critical development. Our solution approach, grounded on surveys of industry practice as well as scientific literature, is to support navigation by combining information retrieval and machine learning into Recommendation Systems for Software Engineering (RSSE). While the sheer number of incoming issue reports might challenge the overview of a human developer, our techniques instead benefit from the availability of ever-growing training data. We leverage the volume of issue reports to develop accurate decision support for software evolution. We evaluate our proposals both by deploying an RSSE in two development teams, and by simulation scenarios, i.e., we assess the correctness of the RSSEs' output when replaying the historical inflow of issue reports. In total, more than 60,000 historical issue reports are involved in our studies, originating from the evolution of five proprietary systems for two companies. Our results show that RSSEs for both IA and CIA can help developers navigate large software projects, in terms of locating development teams and software artifacts. Finally, we discuss how to support the transfer of our results to industry, focusing on addressing the context dependency of our tool support by systematically tuning parameters to a specific operational setting

    Towards an Intelligent System for Software Traceability Datasets Generation

    Get PDF
    Software datasets and artifacts play a crucial role in advancing automated software traceability research. They can be used by researchers in different ways to develop or validate new automated approaches. Software artifacts, other than source code and issue tracking entities, can also provide a great deal of insight into a software system and facilitate knowledge sharing and information reuse. The diversity and quality of the datasets and artifacts within a research community have a significant impact on the accuracy, generalizability, and reproducibility of the results and consequently on the usefulness and practicality of the techniques under study. Collecting and assessing the quality of such datasets are not trivial tasks and have been reported as an obstacle by many researchers in the domain of software engineering. In this dissertation, we report our empirical work that aims to automatically generate and assess the quality of such datasets. Our goal is to introduce an intelligent system that can help researchers in the domain of software traceability in obtaining high-quality “training sets”, “testing sets” or appropriate “case studies” from open source repositories based on their needs. In the first project, we present a first-of-its-kind study to review and assess the datasets that have been used in software traceability research over the last fifteen years. It presents and articulates the current status of these datasets, their characteristics, and their threats to validity. Second, this dissertation introduces a Traceability-Dataset Quality Assessment (T-DQA) framework to categorize software traceability datasets and assist researchers to select appropriate datasets for their research based on different characteristics of the datasets and the context in which those datasets will be used. Third, we present the results of an empirical study with limited scope to generate datasets using three baseline approaches for the creation of training data. These approaches are (i) Expert-Based, (ii) Automated Web-Mining, which generates training sets by automatically mining tactic\u27s APIs from technical programming websites, and lastly, (iii) Automated Big-Data Analysis, which mines ultra-large-scale code repositories to generate training sets. We compare the trace-link creation accuracy achieved using each of these three baseline approaches and discuss the costs and benefits associated with them. Additionally, in a separate study, we investigate the impact of training set size on the accuracy of recovering trace links. Finally, we conduct a large-scale study to identify which types of software artifacts are produced by a wide variety of open-source projects at different levels of granularity. Then we propose an automated approach based on Machine Learning techniques to identify various types of software artifacts. Through a set of experiments, we report and compare the performance of these algorithms when applied to software artifacts. Finally, we conducted a study to understand how software traceability experts and practitioners evaluate the quality of their datasets. In addition, we aim at gathering experts’ opinions on all quality attributes and metrics proposed by T-DQA

    Datasets Used in Fifteen Years of Automated Requirements Traceability Research

    Get PDF
    Datasets are crucial to advance automated software traceability research. Acquiring such datasets come in a high cost and require expert knowledge to manually collect and validate them. Obtaining such software development datasets has been one of the most frequently reported barrier for researchers in the software engineering domain in general. This problem is even more acute in field of requirement traceability, which plays crucial role in safety critical and highly regulated systems. Therefore, the main motivation behind this work is to analyze the current state of art of datasets used in the field of software traceability. This work presents a first-of-its-kind literature study to review and assess the datasets that have been used in software traceability research over the last fifteen years. It articulates several attributes related to these datasets such as their characteristics, threats and diversity. Firstly, 202 primary studies (refer Appendix A) were identified for purpose of this study, which were used to derive 73 unique datasets. These 73 datasets were studied in-depth and several attributes (size, type, domain, availability, artifacts) were extracted (refer Appendix B). Based on analysis of the primary studies, a threat to validity reference model, tailored to Software traceability datasets was derived (refer to figure 4.4). Furthermore, to put some light upon the dataset diversity trend in the Software traceability community, a metric called Dataset Diversity Ratio was derived for 38 authors (refer to figure 4.5) who have published more than one publication in field of software traceability
    corecore