160,042 research outputs found

    Cusp Points in the Parameter Space of Degenerate 3-RPR Planar Parallel Manipulators

    Get PDF
    This paper investigates the conditions in the design parameter space for the existence and distribution of the cusp locus for planar parallel manipulators. Cusp points make possible non-singular assembly-mode changing motion, which increases the maximum singularity-free workspace. An accurate algorithm for the determination is proposed amending some imprecisions done by previous existing algorithms. This is combined with methods of Cylindric Algebraic Decomposition, Gr\"obner bases and Discriminant Varieties in order to partition the parameter space into cells with constant number of cusp points. These algorithms will allow us to classify a family of degenerate 3-RPR manipulators.Comment: ASME Journal of Mechanisms and Robotics (2012) 1-1

    Changing Assembly Modes without Passing Parallel Singularities in Non-Cuspidal 3-R\underline{P}R Planar Parallel Robots

    Full text link
    This paper demonstrates that any general 3-DOF three-legged planar parallel robot with extensible legs can change assembly modes without passing through parallel singularities (configurations where the mobile platform loses its stiffness). While the results are purely theoretical, this paper questions the very definition of parallel singularities.Comment: 2nd International Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Montpellier : France (2008

    A study of the singularity locus in the joint space of planar parallel manipulators: special focus on cusps and nodes

    Get PDF
    Cusps and nodes on plane sections of the singularity locus in the joint space of parallel manipulators play an important role in nonsingular assembly-mode changing motions. This paper analyses in detail such points, both in the joint space and in the workspace. It is shown that a cusp (resp. a node) defines a point of tangency (resp. a crossing point) in the workspace between the singular curves and the curves associated with the so-called characteristics surfaces. The study is conducted on a planar 3-RPR manipulator for illustrative purposes.Comment: 4th International Congress Design and Modeling of Mechanical Systems, Sousse : Tunisia (2011

    Uniqueness domains and non singular assembly mode changing trajectories

    Get PDF
    Parallel robots admit generally several solutions to the direct kinematics problem. The aspects are associated with the maximal singularity free domains without any singular configurations. Inside these regions, some trajectories are possible between two solutions of the direct kinematic problem without meeting any type of singularity: non-singular assembly mode trajectories. An established condition for such trajectories is to have cusp points inside the joint space that must be encircled. This paper presents an approach based on the notion of uniqueness domains to explain this behaviour

    Non-singular assembly mode changing trajectories in the workspace for the 3-RPS parallel robot

    Get PDF
    Having non-singular assembly modes changing trajectories for the 3-RPS parallel robot is a well-known feature. The only known solution for defining such trajectory is to encircle a cusp point in the joint space. In this paper, the aspects and the characteristic surfaces are computed for each operation mode to define the uniqueness of the domains. Thus, we can easily see in the workspace that at least three assembly modes can be reached for each operation mode. To validate this property, the mathematical analysis of the determinant of the Jacobian is done. The image of these trajectories in the joint space is depicted with the curves associated with the cusp points

    Working and Assembly Modes of the Agile Eye

    Get PDF
    This paper deals with the in-depth kinematic analysis of a special spherical parallel wrist, called the Agile Eye. The Agile Eye is a three-legged spherical parallel robot with revolute joints in which all pairs of adjacent joint axes are orthogonal. Its most peculiar feature, demonstrated in this paper for the first time, is that its (orientation) workspace is unlimited and flawed only by six singularity curves (rather than surfaces). Furthermore, these curves correspond to self-motions of the mobile platform. This paper also demonstrates that, unlike for any other such complex spatial robots, the four solutions to the direct kinematics of the Agile Eye (assembly modes) have a simple geometric relationship with the eight solutions to the inverse kinematics (working modes)

    A Framework to Illustrate Kinematic Behavior of Mechanisms by Haptic Feedback

    Get PDF
    The kinematic properties of mechanisms are well known by the researchers and teachers. The theory based on the study of Jacobian matrices allows us to explain, for example, the singular configuration. However, in many cases, the physical sense of such properties is difficult to explain to students. The aim of this article is to use haptic feedback to render to the user the signification of different kinematic indices. The framework uses a Phantom Omni and a serial and parallel mechanism with two degrees of freedom. The end-effector of both mechanisms can be moved either by classical mouse, or Phantom Omni with or without feedback

    On the determination of cusp points of 3-R\underline{P}R parallel manipulators

    Get PDF
    This paper investigates the cuspidal configurations of 3-RPR parallel manipulators that may appear on their singular surfaces in the joint space. Cusp points play an important role in the kinematic behavior of parallel manipulators since they make possible a non-singular change of assembly mode. In previous works, the cusp points were calculated in sections of the joint space by solving a 24th-degree polynomial without any proof that this polynomial was the only one that gives all solutions. The purpose of this study is to propose a rigorous methodology to determine the cusp points of 3-R\underline{P}R manipulators and to certify that all cusp points are found. This methodology uses the notion of discriminant varieties and resorts to Gr\"obner bases for the solutions of systems of equations
    corecore