
A study of the singularity locus in the joint space of

planar parallel manipulators: special focus on cusps and

nodes

Abdel Kader Zaiter, Philippe Wenger, Damien Chablat

To cite this version:

Abdel Kader Zaiter, Philippe Wenger, Damien Chablat. A study of the singularity locus in the
joint space of planar parallel manipulators: special focus on cusps and nodes. 4th International
Congress Design and Modeling of Mechanical Systems, May 2011, Sousse, Tunisia. pp.1-8,
2011. <hal-00598302>

HAL Id: hal-00598302

https://hal.archives-ouvertes.fr/hal-00598302

Submitted on 6 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Résumé— Dans une section de l'espace articulaire des ma-

nipulateurs parallèles, les points cusps et noeuds ont un rôle 

essentiel dans le changement de mode d'assemblage. Ce travail 

présente une étude détaillée de ces points dans l’espace articu-

laire et de travail. On démontre qu'un point cusp (resp. un 

noeud) définit un point de tangence (resp. un point d'intersec-

tion), dans l'espace de travail, entre les courbes singulières et 

les courbes associées aux surfaces caractéristiques. L'étude est 

illustrée sur le manipulateur planaire 3-RPR mais son champ 

d'application est général.  

 

Abstract— Cusps and nodes on plane sections of the singu-

larity locus in the joint space of parallel manipulators play an 

important role in nonsingular assembly-mode changing mo-

tions. This paper analyses in detail such points, both in the 

joint space and in the workspace. It is shown that a cusp (resp. 

a node) defines a point of tangency (resp. a crossing point) in 

the workspace between the singular curves and the curves 

associated with the so-called characteristics surfaces. The 

study is conducted on a planar 3-RPR manipulator for illustr-

ative purposes.  

 

Key-words: parallel manipulator/ assembling mode/ characteristic 

surfaces/ singularity/ cusp.  

1. INTRODUCTION 

Most parallel manipulators have singularities that limit the 

motion of the moving platform. The most dangerous ones 

are the singularities associated with the direct kinematics, 

where two direct kinematic solutions (DKSs) or assembly 

modes (AM) coalesce. Indeed, approaching such a singular-

ity results in large actuator torques or forces, and in a loss 

of stiffness. Planar parallel manipulators have received a lot 

of attention [1-4, 6, 7, 9, 10, 15-16] because of their relative 

simplicity with respect to their spatial counterparts. Moreo-

ver, studying the former may help understand the latter. 

Planar manipulators with three extensible leg rods, referred 

to as 3-RPR manipulators, have often been studied. Such 

manipulators may have up to six assembly modes (AM) 

[1]. The direct kinematics can be written in a polynomial of 

degree six. Moreover, the singularities coincide with the set 

of configurations where two direct kinematic solutions 

coincide. It was first pointed out that to move from one 

assembly mode to another, the manipulator should cross a 

singularity [2]. However, [3] showed, using numerical ex-

periments, that this statement is not true in general. More 

precisely, this statement is only true under some special 

geometric conditions, such as similar base and mobile plat-

forms [4]. Relying on geometric arguments, [5] conjectured 

that the workspace of 3-RPR parallel manipulator is divided 

into two singularity-free regions called aspect and that there 

should be 3 solutions in each aspect. Recently, [6] provided 

a mathematical proof of the decomposition of the work-

space into two aspects using geometric properties of the 

singularity surfaces. Also, non-singular AM changing mo-

tions were described in a 3-D representation. McAree and 

Daniel [4] pointed out that a 3-RPR planar parallel manipu-

lator can execute a non-singular change of assembly-mode 

if a point with triple direct kinematic solutions exists in the 

joint space. The authors established a condition for three 

direct kinematic solutions to coincide and showed that the 

encirclement of a cusp point is a sufficient condition for a 

non-singular AM change. This condition was exploited by 

[7], where authors provided an algorithm to detect the cusp 

points of a 3-RPR parallel manipulator in a section of the 

joint space, which corresponds to an input joint variable set 

to a constant value. Wenger and Chablat [8] investigated 

the question of whether a change of assembly-mode must 

occur or not when moving between two prescribed poses in 

the workspace. They defined the uniqueness domains in the 

workspace as the maximal regions associated with a unique 

assembly-mode and proposed a calculation scheme for 3-

RPR planar parallel manipulators using octrees. They 

showed that up to three uniqueness domains exist in each 

singularity-free region. When the starting and goal poses 

are in the same singularity-free region but in two distinct 

uniqueness domains, a non-singular change of assembly-

mode is necessary. However they did not investigate the 

kind of motion that arises when executing a non-singular 

change of assembly-mode. [9] analyzed the variation of the 

topology of singularity curves and the distribution of the 

cusp points from one section of the joint space to another. 

By calculating the image in the workspace of a trajectory 
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that encircles a cusp point, [10] described all corresponding 

trajectories. Also, the authors introduced the notion of re-

duced configuration space for an aspect and used this no-

tion to show which cusp points must be encircled to 

achieve a non singular AM change in the associated aspect. 

[11] showed the singularity surface in the 3D workspace for 

the 3-RPR parallel manipulator, with the six solutions cor-

responding to the same point in the joint space. Moreover, 

they studied the coincidence of DKSs on the singular 

curves in the reduced configuration space. Another type of 

AM change was reported by [12], which corresponds to the 

encirclement of an α-curve in the joint space. Moreover, the 

authors showed the possibility to produce an AM change 

when approaching a singularity for micro mechanisms that 

present relatively large joint clearances. Later, [13] related 

the encirclement of a α-curve to the encirclement of a loop 

characterized by a node, which corresponds to the simulta-

neous coalescence of two couples of DKSs. [14] provided a 

mathematical condition of the existence of cusps and nodes. 

[15] provided a tool to calculate the practical workspace 

and, therefore, the reduced configuration space, keeping 

one input variable constant. This work was extended in [16] 

with more explanations and more examples. In [17], the 

authors showed, using numerical experiments, that not any 

cusp point may be encircled to perform a nonsingular AM 

changing motion. However, their work did not make it 

possible to identify definite rules. 

In this work, a detailed analysis is provided to explain the 

role of the singular curves in the joint space and in the 

workspace as pertained to the loss of solutions. More atten-

tion is drawn to the study of cusps and nodes. It is shown 

that a cusp (resp. a node) defines a point of tangency (resp. 

a crossing point) in the workspace between the singular 

curves and the curves associated with the so-called charac-

teristics surfaces. This study is illustrated with a 3-RPR 

planar parallel manipulator. It is a first step towards a ri-

gorous and complete analysis of nonsingular changing mo-

tions in parallel manipulators.  

2. ILLUSTRATIVE MANIPULATOR  

A 3-RPR planar parallel manipulator is used in this paper to 

illustrate the analysis. As showed in figure 1, this manipula-

tor has triangular base and platform denoted 321 AAA  and 

321 BBB , respectively.  

 
Figure 1. The 3-RPR planar parallel manipulator. 

 

The base and the platform are related by three similar legs. 

Each leg consists of three joints; the first and third ones are 

passive revolute joints while the second one is an actuated 

prismatic joint. i , (i=1, 2 and 3) represents the passive 

variable that corresponds to the angles between the leg axis 

and the x-axis. The input variables are defined by i  (i=1, 

2 and 3); the lengths of legs. The output variables are usual-

ly defined by the Cartesian coordinates ( , )x y  of 1B  and ; 

the orientation of the platform in the plane with respect to 

the x-axis. In this paper, the position coordinates will be 

more conveniently defined by ( 1 , 1 ) i.e., the cylindrical 

coordinates of 1B . With these parameters, indeed, it is 

possible to simplify the problem: we consider 2-

dimensional slices of the joint space and of the workspace 

by fixing the joint parameter 1 . The projection of a ( 1 , 

)-slice onto the ( 2 , 3 ) plane is consistent with the pro-

jection of the configuration space onto the joint space [4].  

The geometric parameters of the illustrative manipulator 

are the same as those used in [3, 10, and 8], namely:  

04.171 d , 54.162 d , 84.203 d , )0,0(1 A , 

)0,91.15(2 A  and )10,0(3 A .  

3.  SINGULARITIES  

3.1 Singularities and aspects 

The 3-RPR parallel manipulator is in a singular configura-

tion whenever the axes of its three legs are concurrent (the 

platform orientation gets out of control) or parallel (the 

translation along a direction orthogonal to the two parallel 

legs is out of control).  

1
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The singular configurations of the 3-RPR planar parallel 

manipulator can be calculated without any difficulty. They 

define surfaces both in the workspace and in the joint 

space. The singular surfaces divide the workspace into two 

singularity-free domains called aspects [6, 5], referred to as 

1WA  and 2WA . When mapped into the joint space, these 

two aspects coincide and thus define two coincident sets. 

Since we are considering slices by fixing 1 , the singulari-

ty locus can be depicted as curves in the workspace (resp. 

the joint space) in the ( 1 ,)-plane (resp. in the ( 2 , 3 )-

plane). At a point on a singularity curve in the workspace, 

the manipulator is necessarily in a singular configuration. 

At a point on a singularity curve that bounds the joint 

space, the manipulator is in a singular configuration. On an 

internal singularity curve, the point admits several non-

singular DKSs in addition to the singular solution. Near a 

singular point, there are two “mirrored” DKSs in the work-

space on each part of the singular curve [3]. When a singu-

lar point of a singular curve is met in the joint space, the 

two mirrored DKSs coincide and one DKS is then lost in 

each aspect (see [3, 4] for example). 

Plots of the singularity curves for 1 =17 are shown in fig-

ure 2. A 3-RPR planar parallel manipulator has up to 6 as-

sembly modes [1]. For a given point in the joint space that 

is not on a singular curve, there are 2, 4 or 6 DKSs in the 

workspace. The number of DKSs in each region of the joint 

space is indicated in figure 5. 

 

3.2 Cusps and nodes 

Cusps and nodes appear on the singular curves as a conse-

quence of the projection of the manipulator configuration 

space folds onto its joint space [4]. As described by Whit-

ney [18], a cusp arises when a fold is “folded”. Figure 3 

shows the local model of a cusp where the singular locus is 

shown in red lines. Three DKSs coincide at a cusp point. A 

node appears on the singular curves in the joint space at a 

crossing point. A node arises from the projection of two 

distinct folds. There are two pairs of coincident DKSs at a 

node. 

 

3.3 Characteristic surfaces, basic regions - 

basic components 

The notion of characteristic surfaces was introduced in [5]. 

Its definition is recalled thereafter. 

Let iWA  define the boundary of aspect iWA . The charac-

teristic surfaces of iWA , denoted by )( ic WAS , are defined 

as follows: 

 iiic WAWAggWAS 


))(()(
1   (1) 

where: 

g  maps all points of a given set of the workspace into the 

joint space through the manipulator inverse kinematics. 
1

g  maps all points of a given set of the joint space in the 

workspace through the manipulator direct kinematics. 

Note that since we are considering slices by fixing 1 , the 

characteristic surfaces are defined by curves in this paper. 

)( ic WAS  divides iWA  into different basic regions ikWAb ,  

 )( iciikKk WASWAWAb    (2) 

where K  is the set indexing the basic regions.  

The basic components ikQAb  are defined as the images of 

ikWAb  in the joint space:  

)( ikik WAbgQAb   (3) 

Since the 3-RPR planar parallel manipulator has 2 aspects 

and up to 3 DKSs in each aspect, as many as 3 distinct 

points in each aspect map onto one unique point in the joint 

space. Thus, as many as 3 of the basic regions in the work-

space map onto 3 coincident basic components in the joint-

space. In figure 2a, the basic components are the domains 

bounded by parts of the singularity curves. Some of the 

basic regions are shown in figure 6. 

 

The following notation will be used throughout the paper.  

- kD : direct kinematic solution number k. Let us label 1, 2, 

3 the solutions in aspect 1WA  and 4, 5, 6 those in 2WA .  

- kC : curve segment on the singularity curves in the joint 

space where solution kD  is lost when crossing kC . Note 

that since one solution is lost in each of the two aspects, 

there will be always a mirrored solution nD  in the second 

aspect that is lost simultaneously. Before disappearing, nD  

and kD  coincide on kC . 

- mkCP  : the cusp point that enables a nonsingular assem-

bly-mode change between kD  and mD .  

- mkN  : node defined at the crossing point between kC  and 

mC .  

- )(iSc
m

k : the nonsingular curve image of kC  in aspect 

iWA  at the boundary of the basic region imWAb .  

 - kS : singular curve image of kC  in the workspace.  
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Figure 2a shows the curve segments kC  for our 3-RPR 

planar parallel manipulator when 1 =17. 

4. SOLUTION LOSS ON THE SINGULARITY CURVES  

Let take a first point initialP  in a domain associated with 6 

DKSs, 3 in each aspect. There are 3 coincident basic com-

ponents associated with each aspect in this domain. Let take 

a second point finalP  in a neighboring domain with 4 

DKSs. Point initialP  (resp. finalP  ) is defined by 1 =17, 

2 =15 and 3 =15 (resp. 1 =17, 2 =13.25 and 

3 =20.39). Figure 2b shows why solutions 1D  and 5D are 

lost when crossing 1C = 5C  when going from initialP  to 

finalP . We can determine the solution loss on all the other 

curve segments in a similar manner.  

 

 
 

Figure 2. Loss of solutions when crossing singular curves in the joint space 

5. CORRESPONDENCE OF CUSPS AND NODES IN THE 

WORKSPACE 

In this section, it is shown that one image of a cusp point, 

which corresponds to the coalescence of three DKSs in the 

workspace, defines a tangency point between the curves 

associated with the characteristic surfaces and the singular 

curves in the workspace. Also, the other images will cor-

respond to cusp points formed by the characteristic surfac-

es. For a node, two images will correspond to a crossing 

point between the curves associated with the characteristic 

surfaces and the singular curves in the workspace, where 

these two images correspond to the coalescence of two 

couples of DKSs. The other images of a node will corres-

pond to cross points between curves associated to characte-

ristic surfaces. For more simplicity, we consider a manipu-

lator with two aspects, like the illustrative manipulator 

shown in figure 1.  

 

5.1 Case of a cusp point 

As shown in figure 4, a cusp point mkCP   appears where 

curve segments kC  and mC  meet. Both are parts of the 

boundary of coincident basic components. Since mkCP   

allows a non singular AM change between solutions kD  

and mD , these two solutions lie necessarily in the same 

aspect [4], say 1WA . In the workspace, kC  defines one 

singular curve segment kS  and one nonsingular curve 

segment )1(
m

kSc  in aspect 1WA . )1(
m

kSc  lies on the cha-

racteristic surface )( 1WAS c  and defines a part of the boun-

dary of the basic region mWAb 1 . kS  lies on the singular 

curve, on which kD  is lost, and defines a part of the singu-

lar boundary of the basic region kWAb 1 . Similarly, mC  

gives one non-singular curve segment )1(
k

mSc  defining a 

part of the boundary of the basic region kWAb 1  in aspect 

1WA  and one singular curve segment mS  defining a part of 

the singular boundary of the basic region mWAb 1 . As 
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shown in figure 4, another solution nD , that belongs to a 

second aspect 2WA , disappears at curves kC = nC  and 

mC = nC . Also, the singular curve segments kS = nS  and 

mS = nS , defined by kC  and mC , respectively, define two 

parts of the singular boundary of nWAb 2 , where nWAb 2  

lies in the second aspect 2WA . Since mkCP   belongs to 

both kC  and mC , its images in the workspace belong to 

)1(
m

kSc , )1(
k

mSc , kS  and mS . At mkCP  , solutions kD , 

mD  and nD  coalesce in the workspace, therefore this im-

age of mkCP   is the point where the three basic regions 

kWAb 1 , mWAb 1  and nWAb 2  meet in the workspace. Since 

mkCP   has one image kD  in kWAb 1  having )1(
k

mSc  and 

kS  as parts of its boundary, where mkCP   has also an im-

age on )1(
k

mSc  and kS , this image corresponds to the 

intersection point between )1(
k

mSc  and kS . By the same 

way, we can conclude that solution mD  of mkCP   corres-

ponds to the intersection point between )1(
m

kSc  and mS  at 

the boundary of mWAb 1 , and nD  corresponds to the inter-

section point between kS  and mS  at the boundary of 

nWAb 2 . Consequently, the image of mkCP   that corres-

ponds to the coalescence of kD , mD  and nD  is the inter-

section point between )1(
m

kSc , )1(
k

mSc , kS  and mS  (see 

figure 4). From Whitney [18] and Corvez [19], the local 

model of a cusp always defines a point of tangency between 

the singular curve fC  associated with f and the set 

ff CCff \))((
1 , as illustrated in figure 3. In our exam-

ple, the sets fC  and ff CCff \))((
1  correspond to the 

curves mk SS   and )1()1(
k

m

m

k ScSc  , respectively. 

Thus )1()1(
k

m

m

k ScSc   is tangent to mk SS   at the im-

age of mkCP   in the workspace. 

 
Figure 3. Tangency at a cusp point (from [19]). 

 

 
Figure 4. The correspondence of the three coincident solutions of CPk-m.  

 
5.2 Example on the cusp point  

The 3-RPR planar parallel manipulator described in section 

2 is chosen as illustrative example. We will explain the 

correspondence, in the workspace, of cusp point 64CP  

shown in figure 5. This cusp point is formed by the parts of 

curves 4C  and 6C  colored in black and light blue, respec-

tively. Near 64CP , each of these curves separates two do-

mains in the joint space. The first domain corresponds to 

the coalescence of 3 basic components 

11
Q A b =

12
Q A b =

13
Q A b  for aspect 1 plus 3  

24QAb = 25QAb = 26QAb  for aspect 2. In the second do-

main, 2 basic components coalesce (the number of DKSs is 

shown in figure 5). The 6 associated basic regions, which 

correspond to the first region, 11WAb , 12WAb  and 13WAb  

in the first aspect and 24WAb , 25WAb  and 26WAb  in the 

second aspect, are shown in figure 6 and colored in dark 

green and orange, respectively. Any point on 4C  and 6C  

yields 5 different solutions, one of which is a double solu-

tion that lies on the DKP singular curves. Therefore, the 

image of each one of the two curves yields 5 curve images 

in the workspace, where one curve image is a part of the 

singular curves and the four remaining images are parts of 

the characteristic surfaces. In figure 6, the curve images of 

curves 4C  and 6C  are represented by colors black and 

light blue, respectively. Each curve gives the expected 

number and types of curve images. 
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Figure 5. Cusp point CP4-6 and node N1-2 in the joint space. Number of 

DKSs in each region is indicated (orange disks) 

 

Curve 4C  yields the curve image )2(
6

4Sc  at the boundary 

of 26WAb  and 4S = 3S  at the common singular boundary 

of 24WAb  and 13WAb . Also, curve 6C  yields the curve 

image )2(
4

6Sc  at the boundary of 24WAb  and 6S = 3S  at 

the common singular boundary of 26WAb  and 13WAb . Fig-

ure 6 shows that these four curve images have one intersec-

tion point that represents the image of 64CP  correspond-

ing to the coalescence of three DKSs in the workspace. As 

expected, this image is a tangent point between the DKP 

singular curves and the characteristic surfaces.  

It is known that, in the reduced configuration space, the 

different DKSs corresponding to same input variables 

represent the intersection points of a vertical line with the 

configurations space [10, 11]. For a cusp point, the vertical 

line is tangent on the singular curve folded in a specific 

way, where three DKSs coalesce. The projection of this 

fold on the joint space yields the cusp point, also the others 

images of the cusp points will be projections of this fold on 

the configuration space, where these images correspond to 

a cusp point formed by the characteristic surfaces. Figure 6 

shows that the other images of 64CP  correspond to 3 in-

tersection points between the other images of curves 4C  

and 6C , marked by (*), (**) and (***). As we have 6 cusp 

points in the section of the joint space represented in figure 

5 (the red dots), figure 6 shows 6 tangent points (large red 

dots) between the DKP singular curves and the curves as-

sociated with the characteristic surfaces. Also, the studied 

cusp 64CP  has 4 distinct DKSs and the other 5 cusps have 

only 2 distinct DKSs. There are formed by singular curves 

that separate two regions in the joint space, where one re-

gion has 4 DKSs and the other has 2 DKSs. Figure 6 show 

3+5=8 cusp points formed by the characteristic surfaces in 

the workspace (small red dots). 

 
Figure 6. The images of CP4-6 . Red points show the images of the all cusp 

points. The largest points are those associated with a tangency point.  

 

5.3 Case of a node 

In the joint space, a point where two singular curves cross 

is called a node. Such a point corresponds to the simultane-

ous coalescence of two couples of DKSs. For the illustra-

tive manipulator, the image in the workspace of a node 

yields two couples of coincident DKSs lying on the singu-

lar curves, plus, possibly, two nonsingular DKSs. 

Assume that curve segments hC = mC  and kC = nC  inter-

sect in the joint space at node khN  . Since a node comes 

from the projection of two distinct folds of the configura-

tion space, generically the distribution of DKSs in the four 

domains when turning around khN   is n, n-2, n-4 and n-2, 

where n is 4 or 6 for the manipulator under study (Figure 

7). Let hWAb 1 , kWAb 1 , mWAb 2  and nWAb 2  be the basic 

regions associated with the four coincident basic compo-

nents in hQAb 1 , kQAb 1 , mQAb 2  and nQAb 2  in the do-

main with n  4 solutions. Note that, hWAb 1  and kWAb 1  

(resp. mWAb 2  and nWAb 2 ) belong to aspect 1WA  (resp. to 

aspect 2WA ).  
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Figure 7. The correspondence of the two couples of coincident DKSs of Nh-k in the workspace.

Among the images of curve hC = mC  in the workspace, we 

have hS = mS  that defines the singular boundary between 

basic regions hWAb 1  and mWAb 2 . Also, hC  yields 

)1(
k

hSc  and )2(
n

hSc  at the boundaries of kWAb 1  and 

nWAb 2 , respectively. Similarly, curve kC = nC  has one 

image kS = nS  at the singular boundary between kWAb 1  

and nWAb 2 , and )1(
h

kSc  and )2(
m

kSc  at the boundaries 

of hWAb 1  and mWAb 2 , respectively. Since node khN   

belongs to curves hC  and kC , khN   has images on all the 

images of these two curves, especially on hS , )1(
k

hSc , 

)2(
n

hSc , kS , )1(
h

kSc  and )2(
m

kSc . On the other hand, 

as khN   has one image in hWAb 1  where hS  and )1(
h

kSc  

form parts of its boundary, this image is the intersection 

point between hS  and )1(
h

kSc . By the same way, we can 

demonstrate that the image of khN   at the boundary of 

mWAb 2  is the intersection point between mS  and 

)2(
m

kSc . Since these two images of khN   coalesce at 

hS = mS , this coalescence represents the intersection point 

between hS = mS , )1(
h

kSc  and )2(
m

kSc  (see figure 7). As 

)1(
h

kSc  and )2(
m

kSc  lie in two different aspects and 

represent a part of the curve associated with the characteris-

tic surface, also hS  lies on the singular curves in the work-

space, so the first correspondence of a node, representing 

the coalescence of the first couple of DKSs ( hD , mD ), is a 

crossing point between the characteristic surfaces and the 

singular curves. Similarly, the second image of khN   

representing the coalescence of kD  and nD  at kC = nC  is 

the intersection point between kS = nS , )1(
k

hSc  and 

)2(
n

hSc  (see figure 7). Therefore, the second correspon-

dence of a node is also a crossing point between the curves 

associated with the characteristic surfaces and the singular 

curves.  

 

5.4 Example on the node 

Node 21N  in figure 5 is formed by curves 1C  and 2C . 

Each one of 1C  and 2C  yields 5 curve images in the work-

space, which are colored in green and red, respectively, in 

figure 8. The curve images colored in blue and light brown 

are the images of the parts of curves 1C  and 2C , 

represented by the same colors in figure 5. 1C = 5C  yields 

1S = 5S  at the singular boundary between basic regions 

11WAb  and 25WAb . Also, 1C  yields )1(
2

1Sc  and )2(
6

1Sc  

at the boundaries of 12WAb  and 26WAb , respectively. Si-

milarly, curve 2C = 6C  has one image 2S = 6S  at the singu-

lar boundary between 12WAb  and 26WAb , and )1(
1

2Sc  and 

)2(
5

2Sc  at the boundaries of 11WAb  and 25WAb , respec-

tively. 

 

 
Figure 8. Images of N1-2 in the workspace.  
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Figure 8 shows the two cross points corresponding to 21N ; 

the first one is the intersection point between 1S , )1(
1

2Sc  

and )2(
5

2Sc , where the second one is the intersection point 

between 2S , )1(
2

1Sc  and )2(
6

1Sc . 

Note that 21N  has two other image points, which define 

crossing points between the curves associated with charac-

teristic surfaces. These images are represented by (*) and 

(**) in figure 8. Due to space limitation, the demonstration 

is not presented in this paper.  

We have 6 double points in the joint space (figure 5), three 

of them have 4 distinct images and the three remaining ones 

have 2 distinct images. Figure 8 shows 12 intersection 

points (the large blue dots) between the singular curves and 

the curves associated with the characteristic surfaces, and 6 

intersection points (the small blue dots) between the curves 

associated with the characteristic surfaces.  

6. CONCLUSION 

A detailed analysis of singularities in the joint space and in 

the workspace was presented in this paper. It was shown 

that the image of a cusp point corresponding to the coales-

cence of three DKSs, and the image of a double point cor-

responding to the coalescence of two couples of the DKSs 

are, respectively, a tangent point and a crossing point be-

tween a singular curve and a curve associated with the cha-

racteristic surfaces. The demonstration was based on a 

comprehensive description of the images of the singular 

curves reflecting the coalescence of the DKSs on it. This 

preliminary work will help study in detail non-singular as-

sembly-mode changing motions in parallel manipulators. 
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