5,280 research outputs found

    Fast Face-swap Using Convolutional Neural Networks

    Get PDF
    We consider the problem of face swapping in images, where an input identity is transformed into a target identity while preserving pose, facial expression, and lighting. To perform this mapping, we use convolutional neural networks trained to capture the appearance of the target identity from an unstructured collection of his/her photographs.This approach is enabled by framing the face swapping problem in terms of style transfer, where the goal is to render an image in the style of another one. Building on recent advances in this area, we devise a new loss function that enables the network to produce highly photorealistic results. By combining neural networks with simple pre- and post-processing steps, we aim at making face swap work in real-time with no input from the user

    Demystifying Neural Style Transfer

    Full text link
    Neural Style Transfer has recently demonstrated very exciting results which catches eyes in both academia and industry. Despite the amazing results, the principle of neural style transfer, especially why the Gram matrices could represent style remains unclear. In this paper, we propose a novel interpretation of neural style transfer by treating it as a domain adaptation problem. Specifically, we theoretically show that matching the Gram matrices of feature maps is equivalent to minimize the Maximum Mean Discrepancy (MMD) with the second order polynomial kernel. Thus, we argue that the essence of neural style transfer is to match the feature distributions between the style images and the generated images. To further support our standpoint, we experiment with several other distribution alignment methods, and achieve appealing results. We believe this novel interpretation connects these two important research fields, and could enlighten future researches.Comment: Accepted by IJCAI 201

    FaceShop: Deep Sketch-based Face Image Editing

    Get PDF
    We present a novel system for sketch-based face image editing, enabling users to edit images intuitively by sketching a few strokes on a region of interest. Our interface features tools to express a desired image manipulation by providing both geometry and color constraints as user-drawn strokes. As an alternative to the direct user input, our proposed system naturally supports a copy-paste mode, which allows users to edit a given image region by using parts of another exemplar image without the need of hand-drawn sketching at all. The proposed interface runs in real-time and facilitates an interactive and iterative workflow to quickly express the intended edits. Our system is based on a novel sketch domain and a convolutional neural network trained end-to-end to automatically learn to render image regions corresponding to the input strokes. To achieve high quality and semantically consistent results we train our neural network on two simultaneous tasks, namely image completion and image translation. To the best of our knowledge, we are the first to combine these two tasks in a unified framework for interactive image editing. Our results show that the proposed sketch domain, network architecture, and training procedure generalize well to real user input and enable high quality synthesis results without additional post-processing.Comment: 13 pages, 20 figure

    NARRATE: A Normal Assisted Free-View Portrait Stylizer

    Full text link
    In this work, we propose NARRATE, a novel pipeline that enables simultaneously editing portrait lighting and perspective in a photorealistic manner. As a hybrid neural-physical face model, NARRATE leverages complementary benefits of geometry-aware generative approaches and normal-assisted physical face models. In a nutshell, NARRATE first inverts the input portrait to a coarse geometry and employs neural rendering to generate images resembling the input, as well as producing convincing pose changes. However, inversion step introduces mismatch, bringing low-quality images with less facial details. As such, we further estimate portrait normal to enhance the coarse geometry, creating a high-fidelity physical face model. In particular, we fuse the neural and physical renderings to compensate for the imperfect inversion, resulting in both realistic and view-consistent novel perspective images. In relighting stage, previous works focus on single view portrait relighting but ignoring consistency between different perspectives as well, leading unstable and inconsistent lighting effects for view changes. We extend Total Relighting to fix this problem by unifying its multi-view input normal maps with the physical face model. NARRATE conducts relighting with consistent normal maps, imposing cross-view constraints and exhibiting stable and coherent illumination effects. We experimentally demonstrate that NARRATE achieves more photorealistic, reliable results over prior works. We further bridge NARRATE with animation and style transfer tools, supporting pose change, light change, facial animation, and style transfer, either separately or in combination, all at a photographic quality. We showcase vivid free-view facial animations as well as 3D-aware relightable stylization, which help facilitate various AR/VR applications like virtual cinematography, 3D video conferencing, and post-production.Comment: 14 pages,13 figures https://youtu.be/mP4FV3evmy
    corecore