3,726 research outputs found

    Artificial-Noise-Aided Secure Multi-Antenna Transmission with Limited Feedback

    Full text link
    We present an optimized secure multi-antenna transmission approach based on artificial-noise-aided beamforming, with limited feedback from a desired single-antenna receiver. To deal with beamformer quantization errors as well as unknown eavesdropper channel characteristics, our approach is aimed at maximizing throughput under dual performance constraints - a connection outage constraint on the desired communication channel and a secrecy outage constraint to guard against eavesdropping. We propose an adaptive transmission strategy that judiciously selects the wiretap coding parameters, as well as the power allocation between the artificial noise and the information signal. This optimized solution reveals several important differences with respect to solutions designed previously under the assumption of perfect feedback. We also investigate the problem of how to most efficiently utilize the feedback bits. The simulation results indicate that a good design strategy is to use approximately 20% of these bits to quantize the channel gain information, with the remainder to quantize the channel direction, and this allocation is largely insensitive to the secrecy outage constraint imposed. In addition, we find that 8 feedback bits per transmit antenna is sufficient to achieve approximately 90% of the throughput attainable with perfect feedback.Comment: to appear in IEEE Transactions on Wireless Communication

    Artificial-Noise-Aided Secure Transmission Scheme With Limited Training and Feedback Overhead

    Get PDF
    We design a novel artificial-noise-aided secure onoff transmission scheme in a wiretap channel. We consider a practical scenario where the multi-antenna transmitter only obtains partial channel knowledge from the single-antenna receiver through limited training and feedback but has no channel knowledge about the single-antenna eavesdropper. In the design, we first propose a three-period block transmission protocol to capture the practical training and quantization features. We then characterize the statistics of the received signal-to-noise ratios (SNRs) at the receiver and the eavesdropper. Under the secrecy outage constraint, we exploit the on-off scheme to perform secure transmission and derive a closed-form expression for the secrecy throughput. Moreover, we investigate the optimization problem of maximizing the secrecy throughput by proposing an iterative algorithm to determine the optimal power allocation between the information signal and artificial noise, as well as the optimal codeword transmission rate. Furthermore, we define the net secrecy throughput (NST) which takes the signaling overhead into account and address the problem of optimally allocating the block resource to the training and feedback overhead. Numerical results clearly demonstrate how the optimal signaling overhead changes with the number of transmit antennas, and there exists an optimal number of antennas that maximizes the NST.ARC Discovery Projects Grant DP15010390

    On the Design of Artificial-Noise-Aided Secure Multi-Antenna Transmission in Slow Fading Channels

    Full text link
    In this paper, we investigate the design of artificial-noise-aided secure multi-antenna transmission in slow fading channels. The primary design concerns include the transmit power allocation and the rate parameters of the wiretap code. We consider two scenarios with different complexity levels: i) the design parameters are chosen to be fixed for all transmissions, ii) they are adaptively adjusted based on the instantaneous channel feedback from the intended receiver. In both scenarios, we provide explicit design solutions for achieving the maximal throughput subject to a secrecy constraint, given by a maximum allowable secrecy outage probability. We then derive accurate approximations for the maximal throughput in both scenarios in the high signal-to-noise ratio region, and give new insights into the additional power cost for achieving a higher security level, whilst maintaining a specified target throughput. In the end, the throughput gain of adaptive transmission over non-adaptive transmission is also quantified and analyzed.Comment: to appear in IEEE Transactions on Vehicular Technolog

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Enhancing Secrecy with Multi-Antenna Transmission in Wireless Ad Hoc Networks

    Full text link
    We study physical-layer security in wireless ad hoc networks and investigate two types of multi-antenna transmission schemes for providing secrecy enhancements. To establish secure transmission against malicious eavesdroppers, we consider the generation of artificial noise with either sectoring or beamforming. For both approaches, we provide a statistical characterization and tradeoff analysis of the outage performance of the legitimate communication and the eavesdropping links. We then investigate the networkwide secrecy throughput performance of both schemes in terms of the secrecy transmission capacity, and study the optimal power allocation between the information signal and the artificial noise. Our analysis indicates that, under transmit power optimization, the beamforming scheme outperforms the sectoring scheme, except for the case where the number of transmit antennas are sufficiently large. Our study also reveals some interesting differences between the optimal power allocation for the sectoring and beamforming schemes.Comment: to appear in IEEE Transactions on Information Forensics and Securit
    corecore