4 research outputs found

    Artificial-Noise Aided Secure Transmission in Large Scale Spectrum Sharing Networks

    Get PDF
    We investigate beamforming and artificial noise generation at the secondary transmitters to establish secure transmission in large scale spectrum sharing networks, where multiple noncolluding eavesdroppers attempt to intercept the secondary transmission. We develop a comprehensive analytical framework to accurately assess the secrecy performance under the primary users' quality of service constraint. Our aim is to characterize the impact of beamforming and artificial noise generation (BF&AN) on this complex large scale network. We first derive exact expressions for the average secrecy rate and the secrecy outage probability. We then derive an easy-to-evaluate asymptotic average secrecy rate and asymptotic secrecy outage probability when the number of antennas at the secondary transmitter goes to infinity. Our results show that the equal power allocation between the useful signal and artificial noise is not always the best strategy to achieve maximum average secrecy rate in large scale spectrum sharing networks. Another interesting observation is that the advantage of BF&AN over BF on the average secrecy rate is lost when the aggregate interference from the primary and secondary transmitters is strong, such that it overtakes the effect of the generated AN

    Securing internet of medical things with friendly-jamming schemes

    Get PDF
    The Internet of Medical Things (IoMT)-enabled e-healthcare can complement traditional medical treatments in a flexible and convenient manner. However, security and privacy become the main concerns of IoMT due to the limited computational capability, memory space and energy constraint of medical sensors, leading to the in-feasibility for conventional cryptographic approaches, which are often computationally-complicated. In contrast to cryptographic approaches, friendly jamming (Fri-jam) schemes will not cause extra computing cost to medical sensors, thereby becoming potential countermeasures to ensure security of IoMT. In this paper, we present a study on using Fri-jam schemes in IoMT. We first analyze the data security in IoMT and discuss the challenges. We then propose using Fri-jam schemes to protect the confidential medical data of patients collected by medical sensors from being eavesdropped. We also discuss the integration of Fri-jam schemes with various communication technologies, including beamforming, Simultaneous Wireless Information and Power Transfer (SWIPT) and full duplexity. Moreover, we present two case studies of Fri-jam schemes in IoMT. The results of these two case studies indicate that the Fri-jam method will significantly decrease the eavesdropping risk while leading to no significant influence on legitimate transmission
    corecore