3 research outputs found

    Stochastic Fractal Based Multiobjective Fruit Fly Optimization

    Get PDF
    The fruit fly optimization algorithm (FOA) is a global optimization algorithm inspired by the foraging behavior of a fruit fly swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy is introduced to improve the convergence performance of the fruit fly optimization algorithm. To deal with multiobjective optimization problems, the Pareto domination concept is integrated into the selection process of fruit fly optimization and a novel multiobjective fruit fly optimization algorithm is then developed. Similarly to most of other multiobjective evolutionary algorithms (MOEAs), an external elitist archive is utilized to preserve the nondominated solutions found so far during the evolution, and a normalized nearest neighbor distance based density estimation strategy is adopted to keep the diversity of the external elitist archive. Eighteen benchmarks are used to test the performance of the stochastic fractal based multiobjective fruit fly optimization algorithm (SFMOFOA). Numerical results show that the SFMOFOA is able to well converge to the Pareto fronts of the test benchmarks with good distributions. Compared with four state-of-the-art methods, namely, the non-dominated sorting generic algorithm (NSGA-II), the strength Pareto evolutionary algorithm (SPEA2), multi-objective particle swarm optimization (MOPSO), and multiobjective self-adaptive differential evolution (MOSADE), the proposed SFMOFOA has better or competitive multiobjective optimization performance

    Artificial intelligence methods in diagnostics of analog systems

    No full text
    The paper presents the state of the art and advancement of artificial intelligence methods in analog systems diagnostics. Firstly, the diagnostic domain is introduced and its problems explained. Then, computational intelligence approaches usable for fault detection and identification are reviewed. Particular groups of methods are presented in detail, explaining their usefulness and drawbacks. Examples, such as the induction motor or the electronic filter, are provided to show the applicability of the presented approaches for monitoring the state of analog objects from engineering domains. The discussion section reviews the presented approaches, their future prospects and problems to be solved

    Artificial intelligence methods in diagnostics of analog systems

    No full text
    The paper presents the state of the art and advancement of artificial intelligence methods in analog systems diagnostics. Firstly, the diagnostic domain is introduced and its problems explained. Then, computational intelligence approaches usable for fault detection and identification are reviewed. Particular groups of methods are presented in detail, explaining their usefulness and drawbacks. Examples, such as the induction motor or the electronic filter, are provided to show the applicability of the presented approaches for monitoring the state of analog objects from engineering domains. The discussion section reviews the presented approaches, their future prospects and problems to be solved
    corecore